окулус | базы данных

Астрологические исследования

Базы данных


Выбрать базу 
Выбрать по дате 

Выборка для 18 июля по всем годам


Имя Дата Время Зона Место Широта Долгота Пол
Hartmut Michel
18.07.1948 12:00 +2 CED Людвигсбург, Германия 48.53.00.N 9.11.00.E -
Residence: Germany
1988 Nobel Pr Chemistry
For the determination of the three-dimensional structure of a photosynthetic reaction centre


Nelson Mandela
18.07.1918 12:00 +2 EET Village near Umtata in the Transkei, South Africa 31.35.00.S 28.47.00 -
Residence: Qunu, Transkei, South Africa
1993 Nobel Pr Peace
Excerpt from the Nobel Peace Prize acceptance speech "We stand here today as nothing more than a representative of the millions of our people who dared to rise up against a social system whose very essence is war, violence, racism, oppression, repression and the impoverishment of an entire people"


Вин Дизель (Vin Diesel)
Вин Дизель (Vin Diesel)
18.07.1967 12:00 0 00.00.00.N 00.00.00.E М


Кристен Белл
Кристен Белл
18.07.1980 12:00 0 00.00.N 00.00.E ж


ЛОРЕНЦ (Lorentz), Хендрик
18.07.1853 12:00 +0:23:40 LMT Арнхем, Голландия 51.59.00.N 5.55.00.E -
-04.02.1928
Нобелевская премия по физике, 1902 г.
совместно с Питером Зееманом. Голландский физик Хендрик Антон Лоренц родился в Арнхеме в семье Геррита Фредерика Лоренца и Гертруды (ван Гинкель) Лоренц. Отец Л. содержал детские ясли. Мать мальчика умерла, когда ему исполнилось четыре года. Через пять лет отец женился вторично на Люберте Хупкес. Л. учился в средней школе Арнхема и имел отличные оценки по всем предметам. В 1870 г. он поступил в Лейденский университет, где познакомился с профессором астрономии Фредериком Кайзером, чьи лекции по теоретической астрономии заинтересовали его. Менее чем за два года Л. стал бакалавром наук по физике и математике. Возвратившись в Арнхем, он преподавал в местной средней школе и одновременно готовился к экзаменам на докторскую степень, которые он отлично сдал в 1873 г. Через два года Л. успешно защитил в Лейденском университете диссертацию на соискание ученой степени доктора наук. Диссертация была посвящена теории отражения и преломления света. В ней Л. исследовал некоторые следствия из электромагнитной теории Джеймса Клерка Максвелла относительно световых волн. Диссертация была признана выдающейся работой. Л. продолжал жить в родном доме и преподавать в местной средней школе до 1878 г., когда он был назначен на кафедру теоретической физики Лейденского университета. В то время теоретическая физика как самостоятельная наука делала еще только первые шаги. Кафедра в Лейдене была одной из первых в Европе. Новое назначение как нельзя лучше соответствовало вкусам и наклонностям Л., который обладал особым даром формулировать теорию и применять изощренный математический аппарат к решению физических проблем. Продолжая заниматься исследованием оптических явлений, Л. в 1878 г. опубликовал работу, в которой теоретически вывел соотношение между плотностью тела и его показателем преломления (отношением скорости света в вакууме к скорости света в теле - величине, характеризующей, насколько сильно отклоняется от первоначального направления луч света при переходе из вакуума в тело). Случилось так, что несколько раньше ту же формулу опубликовал датский физик Людвиг Лоренц, поэтому она получила название формулы Лоренца - Лоренца. Однако работа Хендрика Л. представляет особый интерес потому, что основана на предположении, согласно которому материальный объект содержит колеблющиеся электрически заряженные частицы, взаимодействующие со световыми волнами. Она подкрепила отнюдь не общепринятую тогда точку зрения на то, что вещество состоит из атомов и молекул. В 1880 г. научные интересы Л. были связаны главным образом с кинетической теорией газов, описывавшей движение молекул и установление соотношения между их температурой и средней кинетической энергией. В 1892 г. Л. приступил к формулированию теории, которую как сам он, так и другие впоследствии назвали теорией электронов. Электричество, утверждал Л., возникает при движении крохотных заряженных частиц - положительных и отрицательных электронов. Позднее было установлено, что все электроны отрицательно заряжены. Л. заключил, что колебания этих крохотных заряженных частиц порождают электромагнитные волны, в том числе световые и радиоволны, предсказанные Максвеллом и открытые Генрихом Герцем в 1888 г. В 1890-е гг. Л. продолжил занятия теорией электронов. Он использовал ее для унификации и упрощения электромагнитной теории Максвелла, опубликовал серьезные работы по многим проблемам физики, в том числе о расщеплении спектральных линий в магнитном поле. Когда свет от раскаленного газа проходит через щель и разделяется спектроскопом на составляющие частоты, или чистые цвета, возникает линейчатый спектр - серия ярких линий на черном фоне, положение которых указывает соответствующие частоты. Каждый такой спектр характерен для вполне определенного газа. Л. предположил, что частоты колеблющихся электронов определяют частоты в испускаемом газом свете. Кроме того, он выдвинул гипотезу о том, что магнитное поле должно сказываться на движении электронов и слегка изменять частоты колебаний, расщепляя спектр на несколько линий. В 1896 г. коллега Л. по Лейденскому университету Питер Зееман поместил натриевое пламя между полюсами электромагнита и обнаружил, что две наиболее яркие линии в спектре натрия расширились. После дальнейших тщательных наблюдений над пламенем различных веществ Зееман подтвердил выводы теории Л., установив, что расширенные спектральные линии в действительности представляют собой группы из близких отдельных компонент. Расщепление спектральных линий в магнитном поле получило название эффекта Зеемана. Зееман подтвердил и предположение Л. о поляризации испускаемого света. Хотя эффект Зеемана не удалось полностью объяснить до появления в XX в. квантовой теории, предложенное Л. объяснение на основе колебаний электронов позволило понять простейшие особенности этого эффекта. В конце XIX в. многие физики считали (как выяснилось впоследствии, правильно), что спектры должны стать ключом к разгадке строения атома. Поэтому применение Л. теории электронов для объяснения спектрального явления можно считать необычайно важным шагом на пути к выяснению строения вещества. В 1897 г. Дж.Дж. Томсон открыл электрон в виде свободно движущейся частицы, возникающей при электрических разрядах в вакуумных трубках. Свойства открытой частицы оказались такими же, как у постулированных Л. электронов, колеблющихся в атомах. Зееман и Л. были удостоены Нобелевской премии по физике 1902 г. <в знак признания выдающегося вклада, который они внесли своими исследованиями влияния магнетизма на излучения>. <Наиболее значительным вкладом в дальнейшее развитие электромагнитной теории света мы обязаны профессору Л., - заявил на церемонии вручения премии Ялмар Теель из Шведской королевской академии наук. - Если теория Максвелла свободна от каких бы то ни было допущений атомистического характера, то Л. начинает с гипотезы о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов>. В конце XIX - начале XX в. Л. по праву считался ведущим физиком-теоретиком мира. Работы Л. охватывали не только электричество, магнетизм и оптику, но и кинетику, термодинамику, механику, статистическую физику и гидродинамику. Его усилиями физическая теория достигла пределов, возможных в рамках классической физики. Идеи Л. оказали влияние на развитие современной теории относительности и квантовой теории. В 1904 г. Л. опубликовал наиболее известные из выведенных им формул, получившие название преобразований Лоренца. Они описывают сокращение размеров движущегося тела в направлении движения и изменение хода времени. Оба эффекта малы, но возрастают, если скорость движения приближается к скорости света. Эту работу он предпринял в надежде объяснить неудачи, постигавшие все попытки обнаружить влияние эфира - загадочного гипотетического вещества, якобы заполняющего все пространство. Считалось, что эфир необходим как среда, в которой распространяются электромагнитные волны, например свет, подобно тому как молекулы воздуха необходимы для распространения звуковых волн. Несмотря на многочисленные трудности, встретившиеся на пути тех, кто пытался определить свойства вездесущего эфира, который упорно не поддавался наблюдению, физики все же были убеждены в том, что он существует. Одно из следствий существования эфира должно было бы наблюдаться обязательно: если скорость света измерять движущимся прибором, то она должна быть больше при движении к источнику света и меньше при движении в другую сторону. Эфир можно было бы рассматривать как ветер, переносящий свет и заставляющий его распространяться быстрее, когда наблюдатель движется против ветра, и медленнее, когда он движется по ветру. В знаменитом эксперименте, выполненном в 1887 г. Альбертом А. Майкельсоном и Эдвардом У. Морли с помощью высокоточного прибора, называемого интерферометром, лучи света должны были пройти определенное расстояние в направлении движения Земли и затем такое же расстояние в противоположном направлении. Результаты измерений сравнивались с измерениями, произведенными над лучами, распространяющимися туда и обратно перпендикулярно направлению движения Земли. Если бы эфир как-то влиял на движение, то времена распространения световых лучей вдоль направления движения Земли и перпендикулярно ему из-за различия в скоростях отличались бы достаточно для того, чтобы их можно было измерить интерферометром. К удивлению сторонников теории эфира, никакого различия обнаружено не было. Множество объяснений (например, ссылка на то, что Земля увлекает за собой эфир и поэтому он покоится относительно нее) были весьма неудовлетворительны. Для решения этой задачи Л. (и независимо от него ирландский физик Дж. Ф. Фитцджералд) предположил, что движение сквозь эфир приводит к сокращению размеров интерферометра (и, следовательно, любого движущегося тела) на величину, которая объясняет кажущееся отсутствие измеримого различия скорости световых лучей в эксперименте Майкельсона - Морли. Преобразования Л. оказали большое влияние на дальнейшее развитие теоретической физики в целом и в частности на создание в следующем году Альбертом Эйнштейном специальной теории относительности. Эйнштейн питал к Л. глубокое уважение. Но если Л. считал, что деформация движущихся тел должна вызываться какими-то молекулярными силами, изменение времени - не более чем математический трюк, а постоянство скорости света для всех наблюдателей должно следовать из его теории, то Эйнштейн подходил к относительности и постоянству скорости света как к основополагающим принципам, а не проблемам. Приняв радикально новую точку зрения на пространство, время и несколько фундаментальных постулатов, Эйнштейн вывел преобразования Л. и исключил необходимость введения эфира. Л. сочувственно относился к новаторским идеям и одним из первых выступил в поддержку специальной теории относительности Эйнштейна и квантовой теории Макса Планка. На протяжении почти трех десятилетий нового века Л. проявлял большой интерес к развитию современной физики, сознавая, что новые представления о времени, пространстве, материи и энергии позволили разрешить многие проблемы, с которыми ему приходилось сталкиваться в собственных исследованиях. О высоком авторитете Л. среди коллег свидетельствует хотя бы такой факт: по их просьбе он в 1911 г. стал председателем первой Сольвеевской конференции по физике - международного форума самых известных ученых - и ежегодно, до самой смерти, выполнял эти обязанности. В 1912 г. Л. ушел в отставку из Лейденского университета с тем, чтобы уделять большую часть времени научным исследованиям, но раз в неделю он продолжал читать лекции. Переехав в Гарлем, Л. принял на себя обязанности хранителя физической коллекции Музея гравюр Тейлора. Это давало ему возможность работать в лаборатории. В 1919 г. Л. принял участие в одном из величайших в мире проектов предупреждения наводнений и контроля за ними. Он возглавил комитет по наблюдению за перемещениями морской воды во время и после осушения Зюйдерзее (залива Северного моря). После окончания первой мировой войны Л. активно способствовал восстановлению научного сотрудничества, прилагая усилия к тому, чтобы восстановить членство граждан стран Центральной Европы в международных научных организациях. В 1923 г. он был избран в международную комиссию по интеллектуальному сотрудничеству Лиги Наций. В состав этой комиссии входили семь ученых с мировым именем. Через два года Л. стал ее председателем. Л. сохранял интеллектуальную активность до самой смерти, последовавшей 4 февраля 1928 г. в Гарлеме. В 1881 г. Л. женился на Аллетте Катерине Кайзер, племяннице профессора астрономии Кайзера. У супругов Лоренц родилось четверо детей, один из которых умер в младенческом возрасте. Л. был необычайно обаятельным и скромным человеком. Эти качества, а также его удивительные способности к языкам позволили ему успешно руководить международными организациями и конференциями. Помимо Нобелевской премии Л. был удостоен медалей Копли и Румфорда Лондонского королевского общества. Он был почетным доктором Парижского и Кембриджского университетов, членом Лондонского королевского и Германского физического обществ. В 1912 г. Л. стал секретарем Нидерландского научного общества.

Марчин Мрочек
Марчин Мрочек
18.07.1982 12:00 0 0.00.00.N 0.00.00.E M


Раткевич Элеонора
18.07.1961 12:00 +3 Riga, Latvija, Latvia 56.57.00.N 24.06.00.E
Биолог,учительница,редактор библиотеки.Писательница НФ,фэнтези.

Риоко Хиросуе
Риоко Хиросуе
18.07.1980 12:00 0 0.00.00.N 0.00.00.E Ж


ХОФМАН (Hoffmann), Роалд
18.07.1937 12:00 +3 Злоцзов, Польша, ныне Золочев, Львовская обл., Украина 49.47.00.N 24.52.00 -
-----------
Нобелевская премия по химии, 1981 г.
совместно с Кэнити Фукуи. Американский химик Роалд Хофман (при рождении Сафран), названный в честь норвежского исследователя Роальда Амундсена, родился в г. Злоцзове в Польше (ныне г. Золочев, Украина, СССР), в семье инженера Хиллеля Сафрана и школьной учительницы Клары Розен. В период с начала второй мировой войны по июнь 1941 г. на этой территории находились войска Советской Армии. Когда немецкая армия оккупировала эту местность, Сафраны, евреи по национальности, были интернированы в гетто, а затем в трудовой лагерь. В 1943 г. Сафрану-старшему удалось тайно переправить сына и его мать из лагеря, и остаток войны они прятались на чердаке школы вблизи украинского хутора. Отец Х. остался в лагере и, как большинство заключенных, был уничтожен нацистами. Х. и его мать сумели остаться в живых и были освобождены Советской Армией в июне 1944 г. Позднее они переехали в Краков, где мальчик смог посещать школу и где мать вышла замуж за Пауля Хофмана. В течение последующих трех лет Хофманы жили в лагере для перемещенных лиц в Австрии и Германии. В 1949 г. они смогли эмигрировать в Соединенные Штаты Америки, где обосновались в Нью-Йорке. Х. выучил английский язык, свой шестой язык, посещая государственную школу в Бруклине, а затем поступил в Стуивесантскую среднюю школу, специализированную на изучении естественнонаучных предметов. Он начал свое высшее образование по медицине в Колумбийском университете в 1955 г. и через три года получил степень бакалавра, после чего в Гарвардском университете специализировался по химии. В 1959 г. в Упсальском университете в Швеции Х. прослушал летний курс по квантовой химии. В это время он познакомился с Евой Бёрьессон, в 1960 г. они поженились и уехали в Гарвард. Вскоре после этого супруги провели год в Советском Союзе, где Х. учился в Московском государственном университете <по обмену>. Вернувшись в Гарвард, Х. начинает совместные исследования с Уильямом Н. Липскомбом, используя компьютерную технику для расчетов энергетических барьеров в органических молекулах. Он применил правило Хюккеля (которое определяет число электронов в электронном облаке данной молекулы) для вычислений электронной структуры гидридов бора и полиэдрических молекул. После получения докторской степени в 1962 г. Х. работал в течение трех лет в Гарварде, имея стипендию для выполнения научно-исследовательской работы. Под влиянием Е.Дж. Кори и Р.Б. Вудворда он переключился с теоретической химии на прикладную органическую химию. Квантовая теория, разработанная главным образом в 20-х годах Луи де Бройлем, Эрвином Шрёдингером и Вернером Гейзенбергом, есть математическое описание поведения частиц на атомном и субатомном уровне. Квантовая механика - приложение этой теории к движению частиц. В 1965 г., пытаясь найти объяснение несколько неожиданной реакции, обнаруженной Вудвордом при синтезе витамина В 12, Вудворд и Х. открыли законы, основанные на квантовой механике и позволяющие предсказывать, будут ли продуктивны реакции для определенных комбинаций химических реагентов. В основе законов Вудворда - Хофмана заложена известная с 70-х годов прошлого века идея о том, что система стремится принять такую конфигурацию, при которой ее энергия была бы минимальной. Если образующиеся соединения имеют энергию меньшую, чем исходные реагенты, то реакция протекает при заданных атмосферных условиях (давлении и температуре). Если же продукт реакции находится на более высоком энергетическом уровне, чем сумма индивидуальных исходных соединений, то такая реакция не произойдет. Химическая связь между атомами образуется при наложении их электронных орбит, что происходит, когда орбитали (области наибольшей вероятности нахождения электронов) реагирующих веществ симметричны. Другими словами, они должны находиться в том же пространстве и в той же фазе. Законы Вудворда - Хофмана обеспечивают возможность математического предсказания, будет ли определенная химическая реакция поддерживать предполагаемую симметрию и соответственно будет ли образовываться продукт с более прочной связью и более высокой стабильностью, чем исходные реагенты. Вудворд и Х. анализировали эти эффекты орбитальной симметрии для реакций, в которых несколько связей разрывались или образовывались одновременно, а не для последовательно протекающих процессов с образованием промежуточных соединений. Законы Вудворда - Хофмана получили широкий резонанс как наиболее выдающиеся теоретические достижения после второй мировой войны. Из-за простоты их формулировок и отсутствия требований применения сложной компьютерной обработки они широко использовались в практической медицине и промышленности. Их относительная простота согласуется с убеждением Х., что способность достоверно делать предсказание без лабораторных вычислений является основой понимания. <Если вы обращаетесь к компьютеру, значит, вы не поняли закона>, - говорит он. Вудворд и Х. описали свои открытия в 1970 г. в книге <Сохранение орбитальной симметрии> (). По окончании срока стипендии Х. в 1965 г. переходит в Корнеллский университет на должность адъюнкт-профессора по химии (1965...1968), а затем становится полным (действительным) профессором. В 1974 г. ему было присуждено звание профессора физических наук. В 1981 г. Х. совместно с Кэнити Фукуи был награжден Нобелевской премией по химии <за разработку теории протекания химических реакций, созданную ими независимо друг от друга>. Хотя Фукуи разработал свои идеи раньше Х., его глубоко математизированные статьи, опубликованные в японских журналах, читал лишь небольшой круг западных химиков. <Концепции граничных орбиталей и сохранения орбитальной симметрии расширили границы понимания взаимодействия молекул при их столкновении>, - отметила Инга Фишер-Хьялмарс, член Шведской королевской академии наук, в своей речи при презентации лауреатов. <В результате Вашей теоретической работы появились новые, огромной значимости возможности для планирования химических экспериментов>. После получения Нобелевской премии Х. заинтересовался взаимосвязью структуры и реакционной способности неорганических и металлоорганических соединений, от маленьких двухатомных комплексов до кластеров, включающих несколько атомов переходных металлов. Используя молекулы, состоящие из металл-лигандных фрагментов, Х. также исследовал образование кластеров и геометрию олефин- и полиен-металлокарбонильных комплексов. Предсказанные им структуры новых типов трехслойных и порфириновых <сэндвичей> были синтезированы другими исследователями. Он и его коллеги также изучают твердофазные структуры. Другие интересы Х. были связаны с пониманием взаимосвязи науки с искусством и сходных процессов в этих двух областях. Хофманы, которые имеют сына и дочь, живут в Итаке (штат Нью-Йорк). Х. принял американское гражданство. Кроме Нобелевской премии, Х. получил премию Общества химии особо чистых соединений (1969), лекторскую премию Гаррисона Е. Хоува (1970), премию Артура К. Коупа (совместно с Вудвордом) в 1973 г., премию Полинга (1974), медаль Николса (1981) и премию за выдающиеся заслуги в развитии неорганической химии (1982), причем все премии были вручены Американским химическим обществом, а также премию Международной академии квантово-молекулярных исследований (1971). Он является членом американской Национальной академии наук, Американской ассоциации фундаментальных наук, Международной академии квантово-молекулярных исследований и Американского физического общества. Он обладатель почетных ученых степеней Королевского технологического института в Швеции и Йельского университета.