окулус | базы данных

Астрологические исследования

Базы данных


Выбрать базу 
Выбрать по дате 

Выборка для 31 марта по всем годам


Имя Дата Время Зона Место Широта Долгота Пол
Nikolai Gogol
31.03.1809 12:00 +3:32 SOROCHINSK, RUSSIA, AS 52N26 53E10
AUTHOR, NOVELIST, PLAYWRIGHT, SHORT-STORY WRITER
FAILED IN EARLY EFFORTS TO BE ACTOR, WAS CIVIL SERVICE CLERK & HISTORY TEACHER

SADC : #16392
RODDEN RATING : -
TIME ACCURACY : Day
DATA SOURCE : 3-19 O.S., 1969 "BRITANNICA"
NAME AT BIRTH : Nikolai Vasilevich Gogol
NATIONALITY : RUSSIAN
DATE OF DEATH : 4.03.1852 N.S.
PLACE OF DEATH: MOSCOW, RUSSIA
CAUSE OF DEATH: IN GREAT PAIN
RACE : WHITE
MARRIED : 0
CHILDREN : 0
TIMEZONE : LMT
LAST MODIFIED : 10.03.1995 19:45

БРЭГГ (Bragg), Уильям Лоренс
31.03.1890 12:00 +9:14:20 LMT Аделаида, Южная Австралия, Австралия 34.55.00.S 138.35.00 -
-01.07.1971
Нобелевская премия по физике, 1915 г.
совместно с У.Г. Брэггом. Английский физик Уильям Лоренс Брэгг родился в Аделаиде (Австралия), в семье У.Г. Брэгга, в то время профессора математики и физики Аделаидского университета, и Гвендолин (Тодд) Брэгг, дочери сэра Чарлза Тодда, министра почт Южной Австралии. Б. впервые познакомился с рентгеновскими лучами пяти лет от роду, всего через несколько недель после их открытия Вильгельмом Рентгеном. Изучая эти лучи, старший Брэгг построил примитивный рентгеновский аппарат, и как раз в это время мальчик сломал руку. Дядя юного Б., врач по профессии, воспользовался этим аппаратом, чтобы определить характер перелома, что было первым в Австралии зарегистрированным использованием рентгеновских лучей в медицине. Детство Б. прошло в Аделаиде, кроме года, проведенного с родителями во Франции и Англии. Он учился в колледже св. Петра (средняя школа в Аделаиде) и в 1905 г. поступил в Аделаидский университет, который закончил три года спустя с отличием по математике. Во время обучения Б. в университете его отец продолжал изучение радиоактивности и рентгеновских лучей, и они часто вели оживленные дискуссии, касающиеся физических проблем. Когда отцу Б. в 1908 г. предложили пост профессора физики в университете Лидса, вся семья переехала в Англию, прибыв туда в начале следующего года. Б. изучал физику в Тринити-колледже в Кембридже ив 1912 г. с отличием сдал экзамены по естественным наукам. Затем он начал исследовательскую работу под руководством Дж.Дж. Томсона в Кембридже и одновременно вместе со своим отцом изучал рентгеновские дифракционные картины, полученные ранее в этом же году Максом фон Лауэ. В начале своей работы Брэгг-старший поддерживал идею, что рентгеновские лучи представляют собой потоки частиц, но на него произвело впечатление открытие Лауэ, обнаружившего, что рентгеновские лучи дифрагируют (отклоняются) на кристаллах, в результате чего возникают интерференционные картины, аналогичные тем, которые дает свет. Такие картины могли давать только волны. Обсудив дифракцию рентгеновских лучей со своим отцом, Б. пришел к убеждению, что волновая интерпретация Лауэ верна, но что описание деталей дифракции Лауэ неоправданно усложнил. Атомы в кристаллах располагаются в плоскостях, и Б. предположил, что дифракционная картина конкретного вида вызывается специальным расположением атомов в конкретной разновидности кристаллов. Если это так, то рентгеновскую дифракцию можно было использовать для определения структуры кристаллов. В 1913 г. он опубликовал уравнение, позже названное законом Брэгга, описывающее углы, под которыми следует направить пучок рентгеновских лучей, чтобы определить строение кристалла по дифракционной картине рентгеновских лучей, отраженных от кристаллических плоскостей. Затем Б. воспользовался своим уравнением при анализе различных кристаллов. Рентгеновский спектрометр, изобретенный его отцом в том же году, оказал Б. неоценимую помощь, поскольку высокая чувствительность прибора позволяла анализировать кристаллы более сложные, чем те, которые поддавались анализу известными ранее методами. Первым веществом, которое Брэгги исследовали с помощью рентгеновской дифракции, был хлористый натрий, или, проще говоря, поваренная соль. К 1913 г. атомная теория вещества уже прочно утвердилась, и было принято считать, что химические соединения образованы молекулами, состоящими из атомов различных элементов. Например, считалось, что хлористый натрий состоит из молекул, каждая из которых содержит атом натрия и атом хлора. Исследования Брэггов показали, что кристаллы хлористого натрия состоят не из молекул, а из определенным образом расположенных ионов натрия и ионов хлора (ион - заряженный атом). В кристалле нет молекул хлористого натрия. Тем самым было установлено различие между молекулярными соединениями (кристаллы которых состоят из молекул) и ионными соединениями (кристаллы которых состоят из определенным образом расположенных ионов), что имело огромное значение и позволило ученым гораздо глубже понять поведение растворов. Работая совместно, Брэгги свели к 1914 г. рентгеновский анализ простых материалов к стандартной процедуре. В этом же году Б. был избран членом ученого совета и лектором Тринити-колледжа. Работа, проделанная Б. и его отцом в 1912...1914 гг., заложила основы современной рентгеновской кристаллографии. Анализ рентгеновских дифракционных картин служит мощным инструментом для минералогов, металлургов, керамистов и других исследователей, имеющих дело с атомной структурой материалов. Этот метод позволил также ученым определить строение очень сложных молекул, что вызвало к жизни целую область молекулярной биологии. В 1915 г. Б. вместе со своим отцом был награжден Нобелевской премией <за заслуги в исследовании структуры кристаллов с помощью рентгеновских лучей>. Поскольку шла первая мировая война и мир оказался расколотым, церемония награждения была отменена. В эссе, написанном в 1919 г., Г.Д. Гранквист из Шведской королевской академии наук указывал, что благодаря работе Брэггов удалось не только дать математическое описание дифракции рентгеновских лучей, но и <подступиться к проблеме структуры кристаллов> экспериментально. <Благодаря методам, разработанным Брэггами, - продолжал Гранквист, - был открыт совершенно новый мир, который частично был ими исследован с отменной тщательностью>. В своей Нобелевской лекции, прочитанной в Стокгольме в 1922 г., Б. подвел итог работе, за которую он был награжден премией. Он закончил лекцию рассуждением, что <существует приложение рентгеновского анализа более глубокое>, чем определение строения кристаллов, а именно <исследование строения самого атома>. Б. сказал: <Поскольку длина волны рентгеновских лучей меньше <атомного диаметра>, если воспользоваться этим несколько неясным термином, и поскольку дифракция этих лучей происходит в основном на электронах атома, у нас могла бы возникнуть возможность получить некоторое представление о распределении этих электронов таким же образом, как мы делаем выводы о группировке атомов>. Во время первой мировой войны Б. служил техническим советником по звуковой пристрелке (определение расположения войск противника по звуку артиллерийского огня), дойдя по служебной лестнице до звания майора. После войны он вернулся на должность лектора в Тринити-колледж. В 1919 г. он сменил Эрнеста Резерфорда на посту профессора физики Манчестерского университета. Там Б. вернулся к своим исследованиям структуры кристаллов с помощью рентгеновских лучей. Многие годы он посвятил изучению сложных структур, возникающих в силикатном семействе минералов, и этой работой совершил подлинный переворот в минералогии, поставив ее на крепкую научную основу. Впоследствии результаты исследований Б. оказались весьма ценными для Лайнуса К. Полинга. Закончив исследование минералов примерно к 1930 г., Б. занялся изучением металлов и металлических сплавов в качестве руководителя и практического участника работ. В 1937 г. он стал директором Национальной физической лаборатории, а в следующем году занял одновременно должность профессора физики в Кембридже - пост, который он сохранял до 1953 г. В конце второй мировой войны Б. способствовал созданию Международного кристаллографического союза и стал его первым президентом в 1949 г. В конце 30-х гг. Макс Перуц обратил внимание Б. на кристаллографический анализ сложных глобулярных протеинов. Вторая мировая война прервала эти исследования, однако после войны они возобновились. Б. организовал исследования, нашел финансовую поддержку этому проекту и собрал сильную группу специалистов для решения данной проблемы. К тому времени, когда Б. оставил Кембридж, его группа значительно продвинулась вперед в своих исследованиях. За два года Перуц и Джон К. Кендрю добились успехов в анализе глобулярных протеинов, в частности гемоглобина. В то же время Фрэнсис Крик, Джеймс Д. Уотсон и Морис Уилкинс проанализировали строение дезоксирибонуклеиновой кислоты (ДНК). Поддержка, оказанная Б. этим исследованиям, а также инструменты и методики, разработанные под его руководством, сослужили здесь неоценимую службу. За время жизни Б. физика изменилась настолько, что, за исключением ранней работы, за которую он получил Нобелевскую премию, все его исследования, в сущности, оказались в стороне от магистральных направлений физики. Не меньше, чем своей работой в области экспериментальной физики, он известен тем вкладом, который он внес в химию, минералогию, металлургию и молекулярную биологию. Хотя велик его личный вклад в науку, достаточно значителен и результат работы тех групп, которые он организовал и возглавлял. Б. высоко ценили как выдающегося организатора науки, обладавшего огромной энергией, тактом и кругозором. С 1954 г. до своей отставки в 1966 г. Б. был директором Королевского института в Лондоне (пост, который ранее занимал его отец). Все это время он много занимался вопросами научного образования и часто обращался к непрофессиональной аудитории, особенно к школьникам, рассказывая, каким захватывающим и прекрасным может быть поиск истины. Популярный и талантливый оратор, он был приглашен прочесть цикл лекций по телевидению. Б. продолжал выступать с лекциями и после своей отставки, а также писал на научные темы. Б. женился на Элис Хопкинсон в 1921 г., у них было два сына и две дочери. Б. был художником-любителем, а также увлекался литературой и садоводством. Кроме Нобелевской премии, в число наград Б. входят медаль Реблинга Американского минералогического общества (1948 г.), а также медаль Хьюгса (1931 г.). Королевская медаль (1946 г.) и медаль Копли (1966 г.) Королевского общества. Он получил дворянство в 1941 г. Член Королевского общества, Б. был также членом академий наук Соединенных Штатов, Франции, Швеции, Китая, Нидерландов и Бельгии, а также Французского общества минералогии и кристаллографии.

Владимир Винокур
Владимир Винокур
31.03.1948 12:00 0 0.00.00.N 0.00.00.E M


ПАС (Paz), Октавио
31.03.1914 12:00 -6:36:36 LMT Мехико, Мексика 19.24.00.N 99.09.00. -
-20.04.1998
Нобелевская премия по литературе, 1990 г.
Мексиканский поэт, эссеист, публицист и дипломат Октавио Пас родился 31 марта 1914 г. в Мехико в семье прогрессивного политического журналиста. Октавио Пас еще в детстве знакомится с лучшими образцами мировой литературы и искусства, проявляя особый интерес к модернистским тенденциям (У. Блейк, Ф. Хелдерлин, Жерар де Нервал, А. Рембо), а также к сюрреалистам. Это влияние заметно уже в первом сборнике поэзий О. Паса <Дикий месяц> (1933). В годы гражданской войны в Испании В. Пас занимает антифашистскую позицию и публикует поэму <Но пассаран!> (1936), а в 1937 г. участвует во II-ом международном конгрессе по вопросам защиты культуры, который проходил в Испании, в самый разгар войны. После своего возвращения в Мехико В. Пас учреждает литературную группу <Тальер> и начинает издавать журнал с таким же названием (1938...1941), который отражал мировосприятие нового поколения. В 1943 г. О. Пас едет в США, знакомится с англо-американской модернистской поэзией. Он создает интеллектуальную, глубоко метафорическую, насыщенную образами лирику: сборники <Корни человека> (1937), <Между камнем и цветком> (1941), <На краю света> (1942), <Свобода под честное слово> (1958), <Саламандра> (1962) и др. Занимал дипломатические посты в ООН, был послом во Франции, Японии и других странах. В 1945 г. О. Пас был направлен на дипломатическую работу в Францию, где пишет свое фундаментальное произведение <Лабиринт одиночества> (El laberinto de la soledad, 1950). Пас исследует противоречие между мексиканской <маской> (заимствованием иностранных культурных моделей) и индейскими корнями национальной культуры. В 1962 г. О. Пас был назначен послом в Индии. Возможность изучать древние источники религии и культуры отразилась в его творчестве: сборник поэзий <Восточный склон> (1962...1968), книга его лирической поэзии <Обезьянья грамматика> (1974), <Возвращение> (1975) и др. В 1968 г. О. Пас оставляет дипломатический пост в знак протеста против кровавой расправы на студенческой демонстрации в Тлатеполко во время Олимпийских игр в Мехико. Возвратившись на родину, О. Пас основал ежемесячники по литературе, искусству и политике: <Плурал> (1971...1976) и <Вуэльта> (с 1976). Проблемам эстетики, теории литературы и искусства посвящены труды О. Паса <Лук и лира> (1956), <Марсел Дюман> (1968). Его поэтические произведения собраны в сборниках <Поэмы> (1935...1975), <Душевный ствол> (1976...1987). В книге <Постскриптум> (Posdata, 1970) исследуется, как в сегодняшней Мексике действует ацтекская культурно-психологическая модель господства и жертвенного угнетения. Мысли Паса о месте искусства и литературы в обществе с исчерпывающей полнотой высказаны в эссе <Переменный ток> (Corriente alterna, 1967) и <Дети грязи> (Los hijos del limo, 1974). Очарованность поэзией, ее открытостью, языком, обращенностью как к историческому времени, так и к сегодняшнему дню, выразилась в эссеистических сборниках Паса, опубликованных между 1956 и 1974. Теорию Пас поверяет лирикой, представленной в антологии 1987. Входящая в сборник большая поэма <Камень солнца> (Piedra de sol, 1957) построена на контрапункте преходящего времени - и циклически возвратного, мифологического, смерти - и всепобеждающей силы жизни, одиночества - и чувства сопричастности человечеству и природе. Центральный образ поэмы восходит к ацтекскому солнечному календарю. В 1990 г. О. Пасу была присуждена Нобелевская премия по литературе <за пристрастные всеобъемлющие произведения, отмеченные чувственным интеллектом и гуманистической целостностью>. О. Пас умер 20 апреля 1998 г.

Ричард Чемберлен (Richard Chamberlain)
Ричард Чемберлен  (Richard Chamberlain)
31.03.1934 18:20 -8 Лос-Анжелес, Калифорния, США 34.03.N 118.15.W M


РУББИА (Rubbia), Карло
31.03.1934 12:00 +1 CET Gorizia, Италия 45.57.00.N 13.38.00 -
-----------
Нобелевская премия по физике, 1984 г.
совместно с Симоном ван дер Мером. Итальянский физик Карло Руббиа родился в маленьком городке провинции Гориция, расположенном неподалеку от итало-югославской границы, и был старшим сыном инженера-электрика Сильвио Руббиа и учительницы начальной школы Беатриче (в девичестве Личени) Руббиа. Способности к науке и технике у мальчика проявились рано он проводил много времени, изучая электрическое оборудование средств связи, брошенных во время второй мировой войны. К концу войны югославская армия заняла большую часть провинции Гориция, и семья Руббиа эвакуировалась сначала в Венецию, затем в Удине и, наконец, поселилась в Пизе. После окончания средней школы Р. намеревался изучать физику в привилегированной школе, входившей в состав Пизанского университета, но провалился на вступительных экзаменах из-за пробелов в образовании, вызванных войной. Вынужденный оставить мечту о физике, Р. поступает на инженерный факультет Миланского университета. Через несколько месяцев он получает уведомление о том, что может вернуться в Пизу и поступить на образовавшуюся в последний момент вакансию. Впоследствии Р. заметил по этому поводу, что стал физиком благодаря случаю. Он продолжает свое образование в Пизе и в 1958 г. пишет докторскую диссертацию, посвященную экспериментальному исследованию космических лучей и разработке приборов для детектирования элементарных частиц, образующихся в ускорителях при столкновениях других частиц, разогнанных до высоких энергий. Чтобы набраться опыта, особенно в области ускорителей, Р. проводит 1958/59 учебный г. в Колумбийском университете, где работает со Стивеном Вайнбергом и другими ведущими учеными в области физики частиц высоких энергий. По возвращении в Италию в 1960 г. он работает какое-то время в Римском университете, а затем переходит в ЦЕРН (Европейский центр ядерных исследований) - консорциум тринадцати европейских государств, расположенный в Швейцарии, неподалеку от Женевы. Незадолго до этого ЦЕРН построил самый мощный в мире ускоритель частиц - протонный синхротрон, с помощью которого исследователи надеялись получить элементарные частицы, предсказанные теоретически, но еще не подтвержденные экспериментально. Физикам известно четыре фундаментальных взаимодействия, существующих в природе: гравитационное (притяжение между массами), электромагнитное (взаимодействие между электрически заряженными или магнитными телами), <сильное> (взаимодействие, не дающее распасться ядру, компенсирующее отталкивание несущих электрический заряд протонов и удерживающее не имеющие заряда нейтроны) и <слабое> (взаимодействие, связанное с радиоактивным распадом некоторых нестабильных ядер, в частности с испусканием бета-частиц, или электронов). Считалось, что фундаментальные взаимодействия осуществляются путем обмена частицами, или квантами силовых полей, представляющими собой, как считалось с первых дней существования квантовой теории, дискретные порции, из которых слагается энергия. Первой такой частицей переносчиком взаимодействия, которая была обнаружена, оказался фотон - квант электромагнитного излучения, например света. Развитие современной квантовой механики, признающей дуализм волна - частица, привело физиков к неизбежному выводу о том, что свет, волновая природа которого была признана на протяжении почти двух столетий, ведет себя как поток дискретных частиц. Теория относительности Альберта Эйнштейна ввела эквивалентность массы и энергии, что дало теоретическое и практическое средство для анализа взаимодействий, затрагивающих массы частиц и лишенное массы излучение. Так, при электромагнитном взаимодействии заряженных частиц, например электрона и протона, происходит обмен безмассовыми фотонами. В 1935 г. японский физик Хидэки Юкава чисто теоретически предсказал, что взаимодействие внутри ядра может осуществляться полями, квант которых обладает массой, и оценил вероятное значение этой массы. Предсказанная Юкавой частица была обнаружена в 1947 г. английским физиком Сесилом Ф. Пауэллом в столкновениях высокоэнергетических космических лучей с ядрами. Частица получила название пи-мезона, или пиона, масса ее примерно в 200 раз больше массы электрона Пион является переносчиком сильного взаимодействия. Позднее пион был получен и в лабораторных условиях на мощных ускорителях. Было открыто много различных мезонов и других субатомных частиц. Активная деятельность в этой области продолжается и поныне. Одни физики предлагают теории, позволяющие навести некое подобие рационального порядка в дикой мешанине частиц, другие пытаются строить все более и более мощные ускорители, с тем чтобы сделать наблюдаемыми все большее количество частиц. Существование четырех фундаментальных взаимодействий не нравилось физикам, и они давно пытались создать теории, которые бы объединили все взаимодействия. В 1960 г. американский физик Шелдон Л. Глэшоу предложил единую теорию электромагнитного и слабого взаимодействия (объединенное взаимодействие получило название электрослабого), которая требовала, однако, существования трех не наблюдавшихся ранее частиц W + - с положительным электрическим зарядом, W - - с отрицательным электрическим зарядом и Z 0 - с нулевым зарядом. Все три частицы попали в один класс частиц, называемых бозонами (а честь индийского физика Шатьендраната Бозе). Фотон, пион и ядра с четным числом нуклонов (протонов и нейтронов) также являются бозонами. Стивен Ванберг и Абдус Салам независимо друг от друга предсказали, что бозоны Глэшоу должны быть короткоживущими и должны иметь массу, примерно в десять раз большую, чем масса любой из известных элементарных частиц. Из-за больших ожидаемых масс для рождения таких частиц требуются необычайно высокие энергии. В 1969 г. Р. вместе с Альфредом Манном и Дэвидом Клайном решил заняться поиском W - и Z -частиц в Фермиевской национальной ускорительной лаборатории (Фермилаб) близ Чикаго. Через два года они приостановили свои работы, чтобы объявить о получении данных, свидетельствующих о существовании нейтральных токов - потока незаряженных частиц, ожидаемых как следствие обмена Z 0 -частицами. Сообщение группы Р., если бы оно подтвердилось, означало бы подтверждение теории Глэшоу - Вайнберга - Салама. Однако, после того как исследователи из ЦЕРНа, также занимавшиеся поиском неуловимых токов, объявили в 1973 г. о том, что им удалось получить почти окончательные данные, группа из Фермилаба поспешно опубликовала статью, в которой признавала, что ей не удалось обнаружить нейтральные токи. Через год группа еще раз изменила свое мнение и опубликовала исчерпывающе подробную статью о существовании нейтральных токов. Хотя правильность выводов последней статьи ни у кого не вызвала сомнений, эпизод с отказом от открытия нейтральных токов несколько <подмочил> репутацию Р. Располагая новыми данными, косвенно подтверждающими существование W - и Z -частиц, Р. снова принимается за их поиски. Однако ни один существовавший тогда ускоритель не позволял достичь энергий, необходимых для рождения столь массивных частиц. В 1976 г. Р., Клайн и Питер Макинтайр внесли радикальное предложение о переделке имевшегося в ЦЕРНе ускорителя в сверхмощный протонный синхротрон (СПС), чтобы разгонять частицы до высоких энергий с целью получения в нем пучков протонов и антипротонов, циркулирующих по одному и тому же кольцеобразному туннелю в противоположных направлениях и сталкивающихся после разгона до нужных энергий на встречных курсах. П.А.М. Дирак предсказал в 1928 г. существование антиматерии в форме антиэлектрона - частицы-близнеца отрицательно заряженного электрона, но с положительным зарядом. Столкновение материи и антиматерии приводит к аннигиляции обеих масс с выделением энергии. Теория Дирака была подтверждена в 1932 г., когда Карл Д. Андерсон открыл антиэлектрон (называемый сейчас позитроном). Предложение Руббиа - Клайна - Макинтайра требовало решения многих трудных проблем и было встречено с изрядным скептицизмом. Тем не менее Р., известному своим неистощимым оптимизмом и <пробивными> способностями, удалось убедить ЦЕРН принять в 1979 г. проект постройки СПС ориентировочной стоимостью в 100 млн. долларов. Одним из наиболее важных пунктов осуществления замыслов было создание сложного детектора для обнаружения частиц, рождающихся при столкновениях, и определения их характеристик, таких, как энергия и направление движения. Работая с группой, насчитывавшей более 100 человек, Р. и его коллеги построили 1200-тонную детекторную камеру, позволявшую идентифицировать и определять свойства примерно десяти разыскиваемых частиц, которые экспериментаторы надеялись обнаружить (по одной на каждый млрд. столкновений). Меньший - 200-тонный - детектор был построен второй группой для других экспериментов и подтверждения результатов, получаемых с помощью первого детектора. Проблема получения достаточного количества антипротонов (антиматерия встречается крайне редко) была решена Симоном ван дер Мером. Предложенный им метод состоял в том, что антипротоны, рождающиеся при бомбардировке твердой медной мишени короткими сериями импульсов очень быстро движущихся протонов от протонного синхротрона (ПС), отводились и собирались в специальном накопительном кольце. Сложная система электродов фокусировала антипротоны, собирая их в <пачки> импульсы. Затем антипротоны из накопительного кольца снова инжектировались в ПС, получая предварительное ускорение, и поступали в СПС вместе со <сгустками> протонов, предварительно ускоренных аналогичным образом. Затем частицы и античастицы окончательно ускорялись до энергии в 300 млрд. электрон-вольт. Поскольку частицы и античастицы имеют заряды противоположных знаков, они обращаются по откачанному до глубокого вакуума кольцу диаметром около 4 миль в противоположных направлениях в виде трех <сгустков> частиц каждого сорта и сталкиваются в шести вполне определенных точках, в двух из которых расположены детекторы. Эксперименты начались в 1982 г., и в течение одного месяца удалось обнаружить пять W -частиц. Во избежание преждевременных заявлений об открытии Р. выждал до конца 1983 г. и опубликовал сообщение своей группы об открытии W + и W - -частиц только после тщательного анализа экспериментальных данных, а еще через несколько месяцев сообщил об открытии Z 0 -частицы. В 1984 г. Р. и ван дер Мер были удостоены Нобелевской премии по физике <за решающий вклад в большой проект, который привел к открытию квантов поля W - и Z -частиц, переносчиков слабого взаимодействия>. При презентации лауреатов, Геста Экспонг, член Шведской королевской академии наук, заявил: <Когда в ЦЕРНе были открыты W - и Z -частицы, сбылась давняя мечта о лучшем понимании слабого взаимодействия, которое оказывается слабым именно потому, что W - и Z -частицы такие тяжелые>. В заключение своей речи Экспонг высказал предположение, что <открытие W - и Z -частиц войдет в историю физики как открытие радиоволн и фотонов света - переносчиков электромагнетизма>. Незадолго до объявления о присуждении премии Р. со своей группой сообщил об открытии t-кварка элементарной частицы, которую считают фундаментальной составляющей других частиц, таких, как протоны и нейтроны. Р. выступил также с предложением о пристройке нового и гораздо более мощного ускорителя протонов к большому электрон-позитронному коллайдеру ЦЕРНа. С 1970 г. Р. проводит полгода, занимаясь преподавательской деятельностью, в Гарвардском университете, где в 1986 г. он стал профессором физики, а другую половину - как старший физик в ЦЕРНе. Энергичный, не ведающий покоя, легкий на подъем, Р. пользуется признанием не только как искусный экспериментатор, но и как гибкий и динамичный руководитель проектов. В 1957 г. Р. женился на учительнице физики средней школы Маризе Роме. Чета Руббиа, у которой родились сын и дочь, живет в Женеве и имеет дом близ Бостона (штат Массачусетс). В 1985 г. Р. был награжден итальянским Большим крестом и премией Джорджа Ледли Гарвардского университета. Он состоит членом Европейской академии наук и Американской академии наук и искусств, а также является иностранным членом Лондонского королевского общества. Он - почетный доктор многих университетов, в т. ч. университетов Женевы, Генуи, Северо-Западного, Карнеги - Меллона, Удине и Ла-Платы.

ТОМОНАГА (Tomonaga), Синъитиро
31.03.1906 12:00 +9 JST Киото, Япония 35.00.00.N 135.45.00 -
-08.07.1979
Нобелевская премия по физике, 1965 г.
совместно с Ричардом Ф. Фейнманом и Джулиусом С. Швингером. Японский физик Синъитиро Томонага родился в Токио, был старшим сыном Сандзюро и Хиде Томонага. В 1913 г., когда его отец занял пост профессора философии Киотского императорского университета, семья переехала в Киото, где Т. учился в прославленной на всю страну 3-й средней школе. Т. получил степень бакалавра по атомной физике в Киото в 1929 г. и оставался здесь еще три года в качестве аспиранта и ассистента в исследовательской лаборатории Кадзюро Тамаки. Одним из его коллег здесь был Хидэки Юкава, который впоследствии предсказал существование пиона, частицы, осуществляющей передачу ядерной силы между протонами и нейтронами. В 1932 г. Т. перешел в Институт химических и физических исследований в Токио в качестве ассистента-исследователя лаборатории Есио Нисины. С 1937 по 1939 г. он работал в Лейпцигском университете с Вернером Гейзенбергом. Работа, посвященная физическим свойствам атомного ядра, которую он опубликовал, будучи в Германии, была принята в качестве докторской диссертации в Токийском императорском университете в 1939 г. В 1941 г. Т. занял пост профессора физики в Токийском университете науки и литературы (который позже вошел в состав Токийского университета культуры). Во время второй мировой войны он работал над радарами, т.е. в той области, которой занимался и Джулиус С. Швингер, позднее разделивший с ним Нобелевскую премию. В начале научной работы интересы Т. были связаны с квантовой электродинамикой, к которой он периодически возвращался на протяжении более чем 20 лет. Его первое исследование в этой области было сделано с Нисиной в Токио, продолжил он его с Гейзенбергом в Лейпциге и вновь вернулся к нему вместе со своими студентами в Токио во время войны. Значительное продвижение на этом пути началось в 1947 г., и именно за эту работу он получил Нобелевскую премию. Целью исследований Т. в области квантовой электродинамики являлось согласование двух эпохальных физических теорий XX в. - квантовой механики и специальной теории относительности. Квантовая механика в том виде, как она была сформулирована в середине 20-х гг., успешно справилась с объяснением строения атома. Однако был один существенный момент, где эта теория оказалась неполной, ибо она не принимала в расчет возможности превращения материи в энергию, и наоборот. Возможность такого преобразования - это центральный результат специальной теории относительности Альберта Эйнштейна. Начиная с 1927 г. английский физик П.А. М. Дирак пытался согласовать квантовую механику с теорией относительности. Он сконцентрировал свое внимание на связи между электронами и электромагнитным, излучением. Согласно законченной форме теории Дирака, фотон, или квант электромагнитной энергии, может <материализоваться>, порождая при этом электрон и позитрон (античастица, двойник электрона). Аналогично электрон и позитрон в результате аннигиляции могут порождать фотон. Т. и Нисина исследовали эти процессы в начале 30-х гг. Теория Дирака дала ключ к новому пониманию взаимодействий заряженных частиц. Например, два соседних электрона могут обменяться серией фотонов, перебрасываясь ими, как мячиками. Сила реакции, испытываемая каждым электроном, когда он испускает или поглощает фотон, тогда проявится как электромагнитное отталкивание, которое стремится удалить электроны друг от друга. В этом случае говорят, что участвующие в подобном обмене фотоны являются <виртуальными> частицами, поскольку их существование быстротечно и их нельзя обнаружить непосредственно. Энергию виртуальных фотонов можно подсчитать, пользуясь принципом неопределенности Гейзенберга, согласно которому максимальная энергия частицы зависит от величины промежутка времени, необходимого для измерения этой энергии. Поскольку виртуальные фотоны существуют очень малое время, их энергия может быть велика. Более того, так как взаимодействующие электроны по мере сближения укорачивают время жизни виртуальных фотонов, в этом случае верхняя граница энергии еще более поднимается. Возникает интересный вопрос: что произойдет, когда один и тот же электрон сначала испустит виртуальный фотон, а затем вновь поглотит его. В этом случае время жизни фотона может приближаться к нулю и, следовательно, допустимая энергия становится неограниченной. Непрерывное испускание и поглощение таких фотонов, по-видимому, придаст электрону бесконечную массу. К началу 40-х гг. было признано, что из теории Дирака вытекает, что электрон должен обладать бесконечной массой, а также - по аналогичным соображениям, связанным с виртуальными электронами и позитронами, - и бесконечным электрическим зарядом. Эти выводы, очевидно, абсурдны, так как масса и заряд электрона, как хорошо известно, конечны и не очень велики. Тем не менее этой теорией продолжали пользоваться, поскольку ее недостатки становятся очевидными, только когда мы изучаем электроны с очень близкого расстояния. Для большинства экспериментов, осуществимых в то время, теория Дирака давала верные предсказания, да к тому же лучшей теории не было. Кризис квантовой электродинамики разразился в 1947 г., когда Уиллис Ю. Лэмб и Роберт К. Резерфорд экспериментально установили, что один энергетический уровень электрона в атоме водорода слегка отличается от значения, предсказанного Дираком. Примерно в то же самое время Поликарп Куш со своими коллегами обнаружил, что магнитный момент такого электрона также слегка отличается от предсказанного значения. Эти противоречия побудили Т. и Швингера реконструировать квантовую электродинамику. Т., изолированный в послевоенной Японии от большинства западных физиков, узнал о результатах Лэмба не из научного журнала, а из научно-популярной колонки в одном еженедельном американском журнале. Прежде были попытки справиться с очевидно бесконечными массой и зарядом электрона, просто отрицая их существование. Т. и Швингер избрали иной подход: вместо отбрасывания бесконечностей они их использовали. Они показали, что измеряемая масса электрона должна состоять из двух компонентов: истинной, или <чистой>, массы, которой обладал бы электрон, если бы он наблюдался изолированно, и массы, связанной с облаком виртуальных фотонов (и других виртуальных частиц), которые электрон непрерывно испускает и поглощает. Если облако фотонов обладает бесконечной массой, то отсюда следует, что чистая масса тоже должна быть бесконечной, но отрицательной. Когда два таких компонента соединяются в общую массу, бесконечности взаимно сокращаются, оставляя только небольшой конечный остаток, который соответствует измеряемой массе. Используя аналогичный подход к бесконечному заряду электрона, Т. и Швингер постулировали бесконечный отрицательный чистый заряд, который притягивает облако положительно заряженных виртуальных частиц. Бесконечно большой положительный заряд виртуального облака экранирует отрицательный чистый заряд, за исключением конечного остатка. Математическая процедура, изобретенная Т. и Швингером для исключения бесконечных масс и зарядов, называется перенормировкой. Хотя перенормировка дала квантовой электродинамике спасительную концепцию, в конечном итоге многие физики считали, что подобное лекарство хуже самой болезни. Перенормировка устраняла некоторые бесконечности, вводя другие, включая массы, которые не только бесконечны, но еще и отрицательны. Однако Т. и Швингер подчеркивали, что в их теории наблюдаемые величины масс конечны и положительны. Электрон нельзя отделить от его облака виртуальных частиц, поэтому бесконечные чистые массу и заряд наблюдать невозможно. Независимо от Т. и Швингера и приблизительно в то же самое время Ричард Ф. Фейнман нашел совершенно отличный путь для выражения идей квантовой электродинамики. Он показал, что каждое взаимодействие между частицами (включая виртуальные частицы) можно представить с помощью диаграммы траекторий частиц в пространстве и времени. Теория перенормировки в квантовой электродинамике оказалась наиболее точной из всех физических теорий. Некоторые характеристики электрона можно измерить с точностью значений до нескольких миллиардных, значения, предсказанные теорией, точно согласуются с экспериментальными данными. Более того, квантовая электродинамика послужила моделью для теорий, описывающих иные силы природы, и перенормировка явилась существенным шагом к тому, чтобы эти теории стали работать. Т., Фейнман и Швингер разделили Нобелевскую премию по физике за 1965 г. <за фундаментальную работу в квантовой электродинамике с далеко идущими последствиями для физики элементарных частиц>, В Нобелевской лекции Т. коснулся эволюции идей, побудивших его начать работу в этом направлении. Неудача теории Дирака, сказал он, <породила у многих сильное недоверие к квантовой теории поля. Были даже люди с крайними взглядами, считавшие, что сама концепция воздействия поля не имеет ничего общего с истинными законами природы... Под влиянием Гейзенберга я пришел к убеждению, что теория воздействий поля, не имевшая объяснения, нуждается во фронтальном наступлении на нее>. Работа Т. во время и сразу после второй мировой войны стала известной за пределами Японии прежде всего благодаря усилиям Юкавы. В результате в 1949 г. его пригласили в Институт фундаментальных исследований в Принстоне (штат Нью-Джерси), где он занимался работой в области квантовой механики систем из многих частиц, таких, как твердые тела, и тем самым открыл новую область исследований. Когда в 1951 г. умер Нисина, Т. вернулся в Японию, чтобы возглавить Институт химических и физических исследований. С 1956 по 1962 г. он был президентом токийского университета культуры, а с 1963 по 1969 г. занимал пост президента Научного совета Японии. Он также возглавлял Институт оптических исследований и служил в различных правительственных комитетах. Он помогал организовать Институт исследований по фундаментальной физике при Киотском университете и Институт ядерных исследований при Токийском университете. В 1940 г. Т. женился на Реко Секигути, дочери директора токийской Метрополитен-обсерватории. У них было два сына и дочь. Т. умер 8 июля 1979 г. Кроме Нобелевской премии, Т. получил премию Японской академии наук (1948), орден Культуры японского правительства (1952) и золотую медаль им. Ломоносова АН СССР (1964). Он был членом Японской академии наук, Германской академии естествоиспытателей <Леопольдина>, иностранным членом Шведской королевской академии наук, членом-корреспондентом Баварской академии наук, иностранным членом американской Национальной академии наук.

Эван МакГрегор (Ewan McGregor)
Эван МакГрегор (Ewan McGregor)
31.03.1971 20:10 +1 Перт, Шотландия 56.24.00.N 03.28.00.W М