окулус | базы данных

Астрологические исследования

Базы данных


Выбрать базу 
Выбрать по дате 

Выборка для 9 октября по всем годам


Имя Дата Время Зона Место Широта Долгота Пол
Jody Williams
09.10.1950 12:00 -5 EST Vermont, USA? 44.15.36.N 72.34.33 -
Residence: Putney, Vermont (USA)
1997 Nobel Pr Peace
For work for the banning and clearing of anti-personnel mines


Olivier-Gilbert Leroy
09.10.1884 3:30 +0:02 TOURS, INDRE ET LOIRE, FR 47N23 0E41
AUTHOR, PARAPSYCHOLOGIST
DIRECTOR OF EDUCATION MADAGASCAR 1941-50, WRITES ON MYSTICISM, LIVES OF THE SAINTS, PARAPSYCH

SADC : #1812
RODDEN RATING : AA
DATA SOURCE : ECS HAS BC IN HAND
NAME AT BIRTH : Antoine Victor Gabriel Leroy
NATIONALITY : FRENCH
RACE : WHITE
TIMEZONE : LMT
LAST MODIFIED : 23.03.1995 00:14

Sir Peter Mansfield
09.10.1933 12:00 +0 GMT Лондон, Англия 51.30.00.N 0.10.00 -
Residence: U.K.
2003 Nobel Pr Medicine
For discoveries concerning magnetic resonance imaging


Брэндон Рут (Brandon Routh)
Брэндон Рут (Brandon Routh)
09.10.1979 12:00 0 00.00.00.N 00.00.00.E М


ЛАУЭ (Laue), Макс фон
09.10.1879 12:00 +0:30:20 LMT Pfaffendorf, близ г. Кобленц, Германия 50.21.00.N 7.35.00.E -
-24.04.1960
Нобелевская премия по физике, 1914 г.
Немецкий физик Макс Теодор Феликс фон Лауэ родился в семье гражданского служащего ведомства военных судов Юлиуса Лауэ и урожденной Минны Церренер. Дворянскую приставку <фон> фамилия обрела в 1913 г., когда отец Л. получил потомственное дворянство. По роду деятельности отца семья часто переезжала с места на место, поэтому Л. пришлось учиться во многих школах, но главным образом среднее образование он получил в протестантской гимназии Страсбурга. В возрасте двенадцати лет Л. стал интересоваться физикой, и его мать предоставила ему возможность посещать <Уранию> - берлинское общество, занимавшееся популяризацией науки. В обществе устраивались выставки действующих моделей научных приборов, демонстрировались опыты, давались к ним пояснения. Окончив в 1898 г. гимназию, Л. стал заниматься физикой, химией и математикой в Страсбургском университете. Одновременно он проходил обязательную годичную военную службу. В университете его интерес к физике поддерживали лекции Фердинанда Брауна. Учился Л. и в университетах Геттингена, Мюнхена и Берлина. В 1903 г. он под руководством Макса Планка в Берлинском университете защитил с отличием докторскую диссертацию по теории интерференции света в плоско-параллельных пластинках. Интерференцией называется взаимодействие пересекающихся световых волн, гасящих или усиливающих друг друга, в зависимости от разности их фаз (состояний в циклах изменений электрического и магнитного полей). Работая над диссертацией, Л. впервые заинтересовался физической оптикой. Последующие два года Л. провел в Геттингенском университете, после чего сдал экзамен на право преподавания физики в средней школе. С 1905 по 1909 г. он был ассистентом Планка в Институте теоретической физики в Берлине. В этот период он пытался применить понятие энтропии к полям излучения и выяснить термодинамический смысл когерентности световых волн. Энтропия в термодинамике представляет собой физическое свойство, связанное с изменениями энергии и степенью равновесия системы. Когерентность световых волн означает существование строго заданного устойчивого соотношения между их фазами, когда степень согласия или рассогласования между их изменяющимися электромагнитными полями остается неизменной. Совместная работа Л. и Планка переросла в дружбу, верность которой они сохранили на всю жизнь. Проработав с 1906 по 1909 г. приват-доцентом (внештатным преподавателем) в Берлинском университете, Л. перешел на физический факультет Мюнхенского университета к Арнольду Зоммерфельду. В Мюнхене Л. читал лекции по оптике и термодинамике ив 1911 г. опубликовал первую обстоятельную монографию, посвященную бывшей тогда еще спорной теории относительности Альберта Эйнштейна. На следующий год Л. получил назначение на кафедру теоретической физики Цюрихского университета, где он провел два года до перехода во Франкфуртский университет. Значительную часть первой мировой войны Л. работал в Вюрцбургском университете у Вильгельма Вина. Там он занимался исследованием электронных ламп, используемых в телефонной и беспроволочной связи. В 1917 г. Л. был назначен на пост заместителя директора Физического института кайзера Вильгельма в Берлине, директором которого был Эйнштейн. Продолжая выполнять свои в основном административные обязанности в институте, Л. в 1919 г. принял приглашение занять пост профессора физики Берлинского университета и оставался им до 1943 г. Вскоре после переезда в Цюрих Л. заинтересовался проблемой, остававшейся нерешенной со времени открытия рентгеновского излучения Вильгельмом Рентгеном (1895): является ли это излучение одной из форм электромагнитного излучения с очень короткой длиной волны? В то время Л. работал над главой по волновой оптике для многотомной <Энциклопедии математических наук> (<Еnzykiopadie der mathematischen Wissenschaften"). Ему необходимо было выразить математически действие дифракционной решетки на световые волны. Дифракционная решетка - это стеклянная пластинка или зеркало, на которые на малом расстоянии друг от друга нанесены равноотстоящие штрихи (бороздки), разбивающие падающий свет на множество отдельных источников. Вторичные световые волны, исходящие от различных участков дифракционной решетки, имеют одинаковую фазу, но попадают в точку экрана, проходя различные расстояния, Так как при распространении света фаза повторяется через расстояние, равное длине волны (например, через расстояние между соседними гребнями в океанской волне), лучи приходят в точку с различными фазами в зависимости от того, сколько (целых и долей) длин волн укладывается в пройденном ими пути. В результате на экране возникает сложная картина из светлых и темных полос: светлых там, где приходящие волны совпадают по фазе и усиливают друг друга, темных - где приходящие волны находятся в противофазе и гасят друг друга. Л. занимался обобщением математического описания для двухмерной дифракционной решетки с двумя семействами штрихов. В то же время к Л. обратился его коллега с просьбой помочь в математическом исследовании поведения световых волн в кристалле. Предполагалось, что кристалл представляет собой трехмерную решетку с атомами в узлах, образующими периодически повторяющийся правильный <узор>. Л. не удалось решить задачу, о которой его просили, но его заинтересовал вопрос о том, как стали бы вести себя световые волны, если бы они были очень короткими (много короче, чем длины волн видимого света) по сравнению с расстояниями между атомами в кристаллической решетке. На существовавшем тогда уровне знаний было принято считать, что межатомные расстояния в кристаллических решетках примерно в 10 раз больше, чем предполагаемые длины волн рентгеновского излучения. Л. сразу же высказал предположение о том, что если рентгеновское излучение действительно является электромагнитными волнами, то кристалл будет действовать на него как трехмерная дифракционная решетка. Из кристалла по различным направлениям исходило бы рассеянное на отдельных атомах рентгеновское излучение и порождало бы дифракционную картину, состоящую из светлых точек, куда приходят лучи, совпадающие по фазе и поэтому усиливающие друг друга, и темных областей, где сходятся лучи, в той или иной мере не совпадающие по фазе и поэтому гасящие друг друга. Л. предложил эксперимент, который позволил бы подтвердить или опровергнуть выдвинутую им гипотезу, а в ожидании, пока найдутся желающие и соответствующее оборудование, принялся за преодоление некоторых теоретических возражений. В апреле 1912 г. сотруднику Мюнхенского университета Вальтеру Фридриху (ассистенту Зоммерфельда) и аспиранту того же университета Паулю Книппингу удалось направить на кристалл медного купороса (сульфата меди) узкий пучок рентгеновского излучения и зафиксировать рассеянное на кристалле излучение на фотопластинке. Их первым успехом была дифракционная картина из темных точек, которую они увидели, когда проявили пластинку (темные пятна на негативе соответствуют большой засветке). Ныне такие дифракционные картины носят название лауэграмм. Даже если падающее рентгеновское излучение состояло из смеси различных длин волн, в темные точки приходило излучение с одной и той же длиной волны. Это было еще одним подтверждением того, что наблюдалась интерференция электромагнитных волн. Соотношения между фазами волн различной длины слишком сложны для того, чтобы порождать четкую дифракционную картину. Но присутствующие в смеси излучения с какой-либо определенной длиной волны могут селективно порождать четкую дифракционную картину, хорошо различимую на общем фоне. Вдохновленный подтверждением своей гипотезы, Л. справился со всеми математическими трудностями. Он обнаружил, что для описания дифракции на двухмерной решетке необходимо несколько раз повторить расчеты, проводимые в случае рассеяния на одномерной решетке. Выведенные им уравнения позволили установить соответствие между экспериментально наблюдаемыми лауэграммами, с одной стороны, и реальными положениями атомов в кристаллах и длиной волны рентгеновского излучения - с другой. Тем самым Л. открыл очень перспективную область исследования (рентгеновскую кристаллографию), в которой рентгеновское излучение используется для определения структуры кристаллов, а в кристаллах известной структуры - для определения длин волн рентгеновского излучения. Анализ рентгеновского излучения, испускаемого атомами (рентгеновская спектроскопия), оказался весьма важным для понимания структуры атома. Эйнштейн называл открытие Л. <одним из наиболее красивых в физике>. <За открытие дифракции рентгеновских лучей на кристаллах> Л. был удостоен Нобелевской премии по физике 1914 г. Представляя лауреата, Г.Д. Гранквист из Шведской королевской академии сказал: <В результате открытия Л. было неопровержимо установлено, что рентгеновское излучение представляет собой световые волны очень малой длины. Кроме того, оно привело к наиболее важным открытиям в области кристаллографии... Открытие Л., - продолжал Гранквист, - позволяет определить положение атомов в кристаллах и получить много полезных сведений>. Работа Л. легла в основу многих открытий: методов рентгеновской кристаллографии Уильяма Л. Брэгга, установления молекулярной структуры пенициллина Дороти К. Ходжкин и аминокислот Джоном К. Кендрю и Максом Перуцем. Она способствовала дальнейшему развитию спектроскопии и физики твердого тела. Усовершенствуя свою теорию интерференции рентгеновского излучения, Л. исследовал взаимодействие между атомами в кристалле и падающим электромагнитным излучением. В конце жизни он подошел к теории дифракции с совершенно новой стороны, рассматривая вместо традиционных амплитуд волн поток энергии. В 30-е гг. Л. принял участие в работах Вальтера Мейсснера, приведших к открытию эффекта выталкивания сверхпроводником магнитного поля. На съезде физиков, состоявшемся в Вюрцбургском университете (1933), Л. выступил с осуждением нового национал-социалистического правительства Адольфа Гитлера за то, что оно сместило Альберта Эйнштейна с поста директора Физического института кайзера Вильгельма в Берлине. Он сравнил травлю Эйнштейна с преследованием Галилея в XVII в. Л. не только отстаивал теорию относительности Эйнштейна от нападок ученых, поддерживающих нацизм, таких, как Филипп фон Ленард и Йоханнес Штарк, но и активно противодействовал приему Штарка в Прусскую академию наук и Германскую ассоциацию исследователей. Несмотря на столь активные антинацистские выступления, Л. на протяжении всей второй мировой войны было разрешено преподавать и заниматься научно-исследовательской деятельностью. После того как в 1944 г. Берлин стал подвергаться систематическим бомбардировкам, Л. перевел Физический институт кайзера Вильгельма в г. Хехинген (земля Вюртемберг). На следующий год он был арестован союзниками и вместе с другими немецкими учеными отправлен в Англию. Л. было разрешено вернутьсявГерманиюв1946 г. По возвращении он стал исполняющим обязанности директора Института Макса Планка (бывшего Института кайзера Вильгельма) и профессором физики Геттингенского университета. Занимая эти посты и будучи консультантом Государственного физико-технического института в Берлине, Л. сыграл главную роль в возрождении науки послевоенной Германии. С 1951 г. и до последовавшего через семь лет ухода в отставку Л. был директором Института физической химии Фрица Габера в Берлине. В 1910 г. Л. вступил в брак с Магдаленой Деган, у них родились сын и дочь. Л. любил парусный спорт, альпинизм, классическую музыку. Особенно он увлекался быстрой ездой на автомобиле или мотоцикле. 8 апреля 1960 г., направляясь за заседание в Ванзее, он столкнулся с мотоциклистом и не смог выбраться из перевернувшейся машины. Почти оправившись от полученных травм, Л. скончался. Он был похоронен в Геттингене, где покоятся Макс Планк, Вальтер Нернст и другие выдающиеся немецкие ученые. Помимо Нобелевской премии, Л. был удостоен многих других наград, в том числе медали Макса Планка Германского физического общества (1932) и Большого креста ордена <За федеральные заслуги> правительства ФРГ (1953). Он был почетным доктором Боннского, Штутгартского, Мюнхенского, Берлинского, Манчестерского и Чикагского университетов, членом многочисленных научных обществ, в том числе Американского, Германского, Французского физических обществ, и Венской академии наук. В 1948 г. Л. был избран почетным президентом Международного союза кристаллографов, в 1953 г. произведен в офицеры ордена Почетного легиона.

Логинов(Витман)Святослав
09.10.1951 12:00 +10 Ussurijsk, Primorskij kraj, Russia 43.48.00.N 131.59.00.
Химик.Писатель-фантаст.

Нестеренко Юрий
09.10.1972 12:00 +3 Moskva, Moskovskaja obl., Russia 55.45.00.N 37.35.00.E
Писатель -фантаст.Образование-МИФИ....принципиальный противник секса....

ФИШЕР (Fischer), Эмиль
09.10.1852 12:00 +0:27:08 LMT Эскирхен, Германия 50.39.00.N 6.47.00.E -
-15.07.1919
Нобелевская премия по химии, 1902 г.
Немецкий химик-органик Герман Эмиль Фишер родился в Ойскирхене, маленьком городке вблизи Кельна, в семье Лоренца Фишера, преуспевающего коммерсанта, и Юлии Фишер (в девичестве Пенсген). До поступления в государственную школу Вецлара и гимназию Бонна он в течение трех лет занимался с частным преподавателем. Весной 1869 г. он с отличием окончил боннскую гимназию. Хотя Ф. надеялся на академическую карьеру, он согласился в течение двух лет работать в отцовской фирме, но проявил к делу так мало интереса, что весной 1871 г. отец направил его в Боннский университет. Здесь он посещал лекции известного химика Фридриха Августа Кекуле, физика Августа Кундта и минералога Пауля Грота. В значительной степени под влиянием Кекуле, уделявшего мало внимания лабораторным занятиям, интерес к химии у Ф. стал ослабевать, и он потянулся к физике. В 1872 г. по совету своего кузена, химика Отто Фишера, он перешел в Страсбургский университет, расположенный в Эльзас-Лотарингии, прежде французской провинции, аннексированной Германией после франко-прусской войны. В Страсбурге под влиянием одного из профессоров, молодого химика органика Адольфа фон Байера, у Ф. вновь возник интерес к химии. Вскоре Ф. окунулся в химические исследования и был замечен после открытия фенилгидразина (маслянистой жидкости, используемой для определения декстрозы), вещества, которое было им использовано позднее для классификации и синтеза сахаров. После получения докторской степени в 1874 г. он занял должность преподавателя в Страсбургском университете. Когда в следующем году Байер получил пост в Мюнхенском университете, Ф. дал согласие стать его ассистентом. Финансово независимый и освобожденный от административных и педагогических обязанностей, Ф. смог сконцентрировать все свое внимание на лабораторных исследованиях. В сотрудничестве со своим кузеном Отто он применил фенилгидразин для изучения веществ, используемых в производстве органических красителей, получаемых из угля. До проведения исследований Ф. химическая структура этих веществ определена не была. В 1878 г. Ф. стал приват-доцентом Мюнхенского университета, а в 1897 г. - адъюнкт-профессором аналитической химии. Спустя три года он оставил Мюнхен и стал профессором химии в Эрлангенском университете. Там он исследовал такие соединения, как кофеин, теобромин (алкалоид) и компоненты экскрементов животных, в частности мочевую кислоту и гуанин, который, как он обнаружил, получается из бесцветного кристаллического вещества, названного им пурином. Мочевая кислота была открыта значительно раньше (в 1776 г.) Карлом Вильгельмом Шееле, а в 1820 г. Фридлиб Фердинанд Рунге выделил кофеин. Однако Ф. доказал, что соединения эти имеют подобную структуру и могут быть синтезированы один из другого. Продолжая работать над этой темой вплоть до 1899 г., Ф. синтезировал большое число производных пуринового ряда, включая и сам пурин (1898 г.). Пурин - важное соединение в органическом синтезе, так как оно, как было открыто позднее, является необходимым компонентом клеточных ядер и нуклеиновых кислот. После занятия в 1885 г. поста профессора химии в Вюрцбургском университете Ф. продолжил свои исследования пуриновых производных. Он также интересовался проблемами стереохимии (пространственным расположением атомов) молекул сахаров. Применив принцип асимметрии атомов углерода (опубликованный в 1874 г. Якобом Вант-Гоффом), Ф. предсказал все возможные трансформации атомных структур для соединений класса сахаров, к 1890 г. он смог в лаборатории синтезировать маннозу, фруктозу и глюкозу. В 1892 г. Ф. стал директором Химического института Берлинского университета и занимал этот пост до самой смерти. Расширив область исследования от сахаров до ферментов, он открыл, что ферменты реагируют только с веществами, с которыми они имеют химическое родство. Проводя исследования с белками, он установил число аминокислот, из которых состоит большинство белков, а также взаимосвязь между различными аминокислотами. Со временем он синтезировал пептиды (комбинации аминокислот) и классифицировал более сорока типов белков, основываясь на количестве и типах аминокислот, образовавшихся при гидролизе (химическом процессе разрушения, включающем расщепление химической связи и присоединение элементов воды). Активный сторонник фундаментальных исследований, Ф. проводил кампанию в защиту таких междисциплинарных проектов, как экспедиция по наблюдению за солнечным затмением для проверки теории относительности. Ориентируясь на политику Рокфеллеровского фонда, которая позволила направить деятельность американских ученых исключительно на фундаментальные исследования, Ф. в 1911 г. получил денежные средства для создания Института физической химии и электрохимии кайзера Вильгельма в Берлине. В 1914 г. он получил оборудование для создания Института исследований угля кайзера Вильгельма в Мюльгейме. В 1902 г. Ф. была вручена Нобелевская премия по химии <в качестве признания его особых заслуг, связанных с экспериментами по синтезу веществ с сахаридными и пуриновыми группами>. Открытие Ф. гидразиновых производных, как оказалось, явилось блестящим решением проблемы получения сахаров и других соединений искусственным путем. Более того, его метод синтеза гликозидов внес определенный вклад в развитие физиологии растений. Говоря об исследованиях сахаров, Ф. в Нобелевской лекции заявил, что <постепенно завеса, с помощью которой Природа скрывала свои секреты, была приоткрыта в вопросах, касающихся углеводов. Несмотря на это, химическая загадка Жизни не может быть решена до тех пор, пока органическая химия не изучит другой, более сложный предмет - белки>. В 1888 г. Ф. женился на Агнессе Герлах, дочери профессора анатомии Эрлангенского университета, у них было трое сыновей. Его старший сын Герман стал профессором биохимии Калифорнийского университета в Беркли. Жена Ф. умерла через семь лет после замужества. После длительных контактов в лаборатории с фенилгидразином у Ф. образовались хроническая экзема и желудочно-кишечные нарушения, что в 1919 г. привело его к смерти. Рихард Вильшеттер считал его <не имеющим равных классиком, мастером органической химии как в области анализа, так и в области синтеза, а в личностном отношении прекраснейшим человеком>. В его честь Германское химическое общество учредило медаль Эмиля Фишера. Среди его многочисленных премий и наград были медаль Дэви Лондонского королевского общества, прусский орден <За заслуги> и орден Максимилиана за заслуги в искусстве и науке. Он был почетным доктором университетов Осло, Манчестера, Брюсселя и Кембриджа. Являлся членом Прусской академии наук и президентом Германского химического общества. Ф. создал крупную научную школу. Среди его учеников - Отто Дильс, Адольф Виндаус, Фриц Прегль, Отто Варбург.