окулус | базы данных

Астрологические исследования

Базы данных


Выбрать базу 
Выбрать по дате 

Выборка для 23 мая по всем годам


Имя Дата Время Зона Место Широта Долгота Пол
James Blish
23.05.1921 4:00 -4 EAST ORANGE, NJ 40N46 74W12
AUTHOR, SCI-FI WRITER, BOOK REVIEWER, EDITOR
HIS WORKS INCLUDE "CITIES IN FLIGHT" 1969, "THE SEEDLING STARS" 1956

SADC : #1622
RODDEN RATING : AA
DATA SOURCE : GBAC
NAME AT BIRTH : James Benjamin Blish
NATIONALITY : AMERICAN
DATE OF DEATH : 29.07.1975
RACE : WHITE
MARRIED : 2
CHILDREN : 2
TIMEZONE : EDT
LAST MODIFIED : 23.06.1992 05:16

БАРДИН (Bardeen), Джон
23.05.1908 12:00 -6 CST Мадисон, Висконсин, США 43.04.23.N 89.24.04. -
-30.01.1991
Нобелевская премия по физике, 1956 г,
совместно с Уолтером Браттейном и Уильямом Шокли. Нобелевская премия по физике, 1972 г. совместно с Леоном Купером и Дж. Робертом Шриффером. Американский физик и инженер-электрик Джон Бардин родился в г. Мэдисон (штат Висконсин) в семье Чарлза Р. Бардина, профессора анатомии и декана медицинской школы при Висконсинском университете, и Элси (в девичестве Хармер) Бардин. После смерти матери мальчика в 1920 г. его отец женился на Рут Хеймс. У Б. есть два брата, сестра и сводная сестра. Б. посещал начальную школу в Мэдисоне, перескочив через четвертый, пятый и шестой классы, затем поступил в университетскую среднюю школу, перешел из нее в мэдисонскую центральную среднюю школу, которую и окончил в 1923 г. Несмотря на врожденный порок - тремор руки, он в молодости был чемпионом по плаванию и умелым игроком в бильярд. В Висконсинском университете Б. получил степень бакалавра по электротехнике в 1928 г., изучив в качестве непрофилирующих дисциплин физику и математику. Еще студентом старших курсов он работал в инженерном отделе <Вестерн электрик компани> (этот отдел позднее вошел в систему лабораторий компании <Белл>). В 1929 г. он получил степень магистра по электротехнике в Висконсинском университете, проведя исследование по прикладной геофизике и излучению антенн. В следующем году он последовал за одним из своих руководителей, американским геофизиком Лео Дж. Питерсом, в Питсбург (штат Пенсильвания), где в компании <Галф ризерч> они разработали новую методику, позволявшую, анализируя карты гравитационной и магнитной напряженностей, определять вероятное расположение нефтяных месторождений. В 1933 г. Б. поступил в Принстонский университет, где изучал математику и физику под руководством Эугена П. Вигнера. Он сосредоточил свое внимание на применении квантовой теории к физике твердого тела. К тому времени квантовая механика довольно успешно описывала поведение индивидуальных атомов и частиц внутри атома. Твердые тела подчиняются тем же самым квантово-механическим законам, но, поскольку макроскопическое тело состоит из большого числа атомов, задача анализа его свойств значительно сложнее. Докторскую степень Б. получил в Принстоне в 1936 г. за диссертацию, посвященную силам притяжения, удерживающим электроны внутри металла. За год до окончания своей диссертации он принял предложение стать на год после защиты временным научным сотрудником Гарвардского университета, каковым и оставался до 1938 г. В Гарварде Б. работал с Джоном Г. Ван Флеком и П.У. Бриджменом над проблемами атомной связи и электрической проводимости в металлах. Когда оговоренный срок закончился, Б. стал ассистент-профессором в Миннесотском университете, где он продолжил свои исследования поведения электронов в металлах. Между 1941 и 1945 гг. он служил гражданским физиком военно-морской артиллерийской лаборатории в Вашингтоне (округ Колумбия), изучая магнитные поля кораблей - важный по тем временам вопрос, учитывая его приложения к торпедному делу и тралению мин. В 1945 г. Б. перешел в компанию <Белл>, где, работая совместно с Уильямом Шокли и Уолтером Браттейном, ему удалось создать полупроводниковые приборы, которые могли как выпрямлять, так и усиливать электрические сигналы. Полупроводники, такие, как германий и кремний, - это материалы, чье электрическое сопротивление занимает промежуточное положение между сопротивлениями металла и изолятора. В процессе этой работы Шокли пытался построить то, что теперь называется полевым транзистором. В таком приборе электрическое поле, индуцированное напряжением, приложенным к полупроводнику, должно было влиять на движение электронов внутри материала. Шокли надеялся использовать электрическое поле, чтобы управлять свободными электронами в одном из участков полупроводника и тем самым модулировать ток, текущий через прибор. Кроме того, транзистор должен был обладать потенциальной возможностью стать усилителем, поскольку небольшой сигнал (приложенное напряжение) мог вызвать большие изменения тока, текущего через полупроводник. Все попытки построить прибор, следуя этому плану, закончились неудачей. Тогда Б. выдвинул предположение, что внешнее напряжение не создает внутри полупроводника желаемого поля из-за слоя электронов, находящихся на его поверхности. В процессе дальнейших исследований выяснилось, что свойства прибора зависят от освещенности, температуры, поверхности и изменяются при контакте с жидкостями или напылении на полупроводник металлической пленки. В 1947 г., как только группа по-настоящему разобралась в поверхностных свойствах полупроводников, Б. и Браттейн построили первые работающие транзисторы. Одним из первых был создан точечно-контактный транзистор, сделанный из одного куска германия. Точечными контактами были два тонких <усика> из металла, названных эмиттером и коллектором и прикрепленных к верхней части германиевого блока, третий контакт, названный базой, был связан с нижней частью блока. Для управления током между эмиттером и коллектором использовался небольшой ток, текущий между эмиттером и базой. Эта идея заменила собой первоначальную идею управления с помощью внешнего электрического поля. В более позднем варианте, названном плоскостным триодом, точечные контакты были удалены, а эмиттер и коллектор были образованы из полупроводниковых материалов, в которые вкраплены небольшие количества специальных примесей. Полевые транзисторы не находили практического применения, пока германий не был заменен кремнием в качестве основного материала. Подобно радиолампе, транзистор позволяет с помощью небольшого сигнала (напряжение для лампы, ток для транзистора) в одном контуре управлять относительно большим током в другом контуре. Благодаря небольшим размерам, простоте структуры, низким энергетическим потребностям и малой стоимости транзисторы быстро вытеснили электронные лампы во всех радиотехнических приборах, за исключением устройств высокой мощности, используемых, например, в радиовещании или промышленных радиочастотных нагревательных установках. В настоящее время во всех высокоскоростных радиотехнических устройствах, а также во многих мощных высокочастотных установках, где можно обойтись без электронных ламп, обычно используются биполярные транзисторы. Усовершенствование технологии сделало возможным создание многих транзисторов из крохотных кусочков кремния, способных выполнять более сложные функции. Число транзисторов в одном подобном кусочке возросло с 10 до примерно 1 млн., в частности, благодаря уменьшению размеров соединений и самих транзисторов до величины от половины микрона до нескольких микрон (микрон равен 0,001 мм). Такие кусочки позволяют строить современные компьютеры, средства связи и управления, причем технология продолжает быстро развиваться. Б. разделил в 1956 г. Нобелевскую премию с Шокли и Браттейном <за исследования полупроводников и открытие транзисторного эффекта>. <Транзистор во многом превосходит радиолампы>, - отметил Е.Г. Рудберг, член Шведской королевской академии наук, при презентации лауреатов. Указав, что транзисторы значительно меньше электронных ламп и в отличие от последних не нуждаются в электрическом токе для накала нити, Рудберг добавил, что <для акустических приборов, вычислительных машин, телефонных станций и многого другого требуется именно такое устройство>. В 1951 г. Бардин покинул телефонную компанию <Белл> и принял предложение занять одновременно два поста: профессора электротехники и профессора физики в Иллинойском университете. Здесь у него возобновился серьезный интерес к теме, которой он занимался в аспирантские годы и которая была прервана второй мировой войной и не возобновлялась им до 1950 г., - проблеме сверхпроводимости и свойств материи при сверхнизких температурах. Сверхпроводимость была открыта в 1911 г. нидерландским физиком Хейке Камерлинг-Оннесом, который обнаружил, что некоторые металлы совершенно теряют сопротивление к электрическому току при температурах, на несколько градусов превышающих абсолютный нуль. Электрический ток представляет собой поток электронов, движущихся в определенном направлении. В металлах многие электроны настолько слабо связаны со своими атомами, что электрическое поле, возникающее благодаря приложенному внешнему напряжению, заставляет их перемещаться в направлении поля. Однако электроны также совершают колебания в случайных направлениях из-за наличия тепла. Это рассеянное движение служит причиной противодействия (сопротивления) потоку электронов под влиянием поля. Когда в результате охлаждения тепловое движение уменьшается, то сопротивление тоже уменьшается. При абсолютном нуле, когда тепловое движение совсем прекращается, можно ожидать, что сопротивление совсем исчезнет. Однако абсолютный нуль практически недостижим. Удивительно в сверхпроводимости то, что сопротивление исчезает при температуре, несколько превышающей абсолютный нуль, когда еще имеется тепловое движение. Никакого удовлетворительного объяснения этому найти тогда не удалось. Оказалось, что сверхпроводники обладают еще одной необычной характеристикой, открытой в 1933 г. немецким физиком Вальтером Мейснером. Он обнаружил, что они являются совершенными диамагнетиками, т.е. препятствуют проникновению внутрь металла магнитного поля. Парамагнитные материалы, среди которых находятся обычные магнитные металлы вроде железа, более или менее поддаются намагничиванию со стороны близко расположенного магнита. Поскольку магнитное поле магнита индуцирует поле противоположной направленности в парамагнитном теле, это тело притягивается к магниту. Но так как диамагнитное тело противодействует магнитному полю, это тело и магнит взаимно отталкиваются, независимо от того, какой именно полюс магнита мы подносим к нему. Магнит, помещенный над сверхпроводником, будет покоиться <на подушке магнитного отталкивания>. Однако, если приложенное магнитное поле достаточно велико, сверхпроводник теряет свои свойства и ведет себя подобно обычному металлу. В 1935 г. немецкий физик Фриц Лондон выдвинул предположение, что диамагнетизм является фундаментальным свойством сверхпроводников и что сверхпроводимость, возможно, представляет собой некий квантовый эффект, проявляющийся каким-то образом во всем теле. Признаки того, что Ф. Лондон был на верном пути, появились в 1950 г. Несколько американских физиков обнаружили, что различные изотопы одного и того же металла становятся сверхпроводящими при различных температурах и что критическая температура обратно пропорциональна атомной массе. Изотопы представляют собой формы элемента, имеющие одинаковое число протонов в своих ядрах (и, следовательно, одинаковое число окружающих ядро электронов) и химически подобны друг другу, но их ядра содержат различное число нейтронов и, следовательно, обладают различными массами. Б. знал, что единственное влияние различных атомных масс на свойства твердого тела проявляется в различиях при распространении колебаний внутри тела. Поэтому он предположил, что в сверхпроводимости металла участвует взаимодействие между подвижными электронами (которые относительно свободны, так что могут двигаться, образуя электрический ток) и колебаниями атомов металла и что в результате этого взаимодействия создается связь электронов друг с другом. К исследованиям Б. позднее присоединились два его студента по Иллинойскому университету - Леон Н. Купер, который вел исследовательскую работу после защиты докторской диссертации, и Дж. Роберт Шриффер, аспирант. В 1956 г. Купер показал, что электрон (который несет отрицательный заряд), движущийся сквозь регулярную структуру (решетку) металлического кристалла, притягивает ближайшие положительно заряженные атомы, слегка деформируя решетку и создавая кратковременное увеличение концентрации положительного заряда. Эта концентрация положительного заряда в свою очередь притягивает второй электрон, и два электрона образуют пару, связанную друг с другом благодаря искажению кристаллической решетки. Таким путем многие электроны в металле объединяются по два, образуя куперовские пары. Б. и Шриффер попытались с помощью концепции Купера объяснить поведение обширной популяции свободных электронов в сверхпроводящем металле, но их постигла неудача. Когда Б. в 1956 г. отправился в Стокгольм получать Нобелевскую премию, Шриффер уже готов был признать поражение, но напутствие Б. запало ему в душу, и ему удалось-таки развить статистические методы, необходимые для решения данной проблемы. После этого Б., Куперу и Шрифферу удалось показать, что куперовские пары, взаимодействуя между собой, заставляют многие свободные электроны в сверхпроводнике двигаться в унисон, единым потоком. Как и догадывался Ф. Лондон, сверхпроводящие электроны образуют единое квантовое состояние, охватывающее все металлическое тело. Критическая температура, при которой возникает сверхпроводимость, определяет ту степень уменьшения температурных колебаний, когда влияние куперовских пар на координацию движения свободных электронов становится доминирующим. Поскольку возникновение сопротивления при отклонении даже одного электрона от общего потока с необходимостью повлияет на другие электроны, участвующие в сверхпроводимости, и тем самым нарушит единство квантового состояния, такое возмущение весьма мало вероятно. Поэтому сверхпроводящие электроны перемещаются коллективно, без потери энергии. Достижение Б., Купера и Шриффера было названо одним из наиболее важных в теоретической физике с момента создания квантовой теории. В 1958 г. они с помощью своей теории предсказали сверхтекучесть (отсутствие вязкости и поверхностного натяжения) у жидкого гелия-3 (изотоп гелия, ядро которого содержит два протона и один нейтрон) вблизи абсолютного нуля, что и подтвердилось экспериментально в 1962 г. Сверхтекучесть наблюдалась ранее у гелия-4 (наиболее распространенный изотоп с одним дополнительным нейтроном), и считалось, что она невозможна у изотопов с нечетным числом ядерных частиц. Б., Купер и Шриффер разделили в 1972 г. Нобелевскую премию по физике <за совместное создание теории сверхпроводимости, обычно называемой БКШ-теорией>. Стиг Лундквист, член Шведской королевской академии наук, при презентации лауреатов отметил полноту объяснения ими сверхпроводимости и добавил: <Ваша теория предсказала новые эффекты и весьма стимулировала дальнейшие разработки в теоретических и экспериментальных исследованиях>. Он также указал на то, что <дальнейшее развитие... подтвердило огромное значение и ценность идей, заложенных в этой фундаментальной работе 1957 г.> БКШ-теория привела к далеко идущим последствиям в технологии и теории. Создание материалов, которые становились сверхпроводниками при более высоких температурах или выдерживали сильные магнитные поля, позволило сконструировать исключительно мощные электромагниты небольших размеров, потребляющие мало энергии. Магнитное поле, создаваемое электромагнитом, прямо связано с током в его обмотках. Для обычного провода присутствие сопротивления служит серьезным ограничением, поскольку выделяемое тепло пропорционально сопротивлению и квадрату силы тока. Дело не только в том, что на тепловые потери расходуется дорогостоящая энергия, но при этом также изнашивается материал. Сверхпроводящие магниты используются при изучении ядерного синтеза, в магнитной гидродинамике, в ускорителях частиц высокой энергии, в поездах, движущихся без трения на магнитной подушке над рельсами, в биологических и физических исследованиях взаимодействия атомов и электронов с сильными магнитными полями и при конструировании компактных мощных электрических генераторов. Английский физик Брайан Д. Джозефсон обнаружил, что при определенных условиях при соединении сверхпроводников возникают так называемые сверхтоки (эффекты Джозефсона), чувствительные к магнитным полям. Датчики, основанные на эффектах Джозефсона, способны определять малейшие изменения магнитной активности в живых организмах и помогают обнаруживать месторождения полезных ископаемых и нефти по их магнитным свойствам. В 1959 г. Б. начал работать в Центре фундаментальных исследований Иллинойского университета, продолжая свои изыскания в области физики твердого тела и физики низких температур. В 1975 г. он стал почетным профессором в отставке. Б. женился на Джейн Максвелл в 1938 г., у них два сына и дочь. В свободное время он путешествует и играет в гольф. Среди многочисленных наград Б. - медаль Стюарта Баллантайна Франклиновского института (1952), премия Джона Скотта г. Филадельфии (1955), премия по физике твердого тела Оливера Бакли Американского физического общества (1954), Национальная медаль <За научные достижения> Национального научного фонда (1965), почетная медаль Института инженеров по электротехнике и электронике (1971) и президентская медаль Свободы правительства Соединенных Штатов (1977). В течение многих лет Б. был соиздателем журнала . Он член американской Национальной академии наук и Американской академии наук и искусств и был избран членом Американского физического общества.

Джоан Коллинз
Джоан Коллинз
23.05.1933 03:00 1 Лондон, Англия 51.30.N 00.10.E Ж


Келли Монако
Келли Монако
23.05.1976 12:00 0 00.00.N 00.00.E Ж


ЛАГЕРКВИСТ (Lagerkvist), Пер
23.05.1891 12:00 +1:12 Vaxjo, Швеция 56.52.00.N 14.49.00 -
-11.07.1974
Нобелевская премия по литературе, 1951 г.
Шведский романист, поэт и драматург Пер Фабиан Лагерквист родился в маленьком городе Вексьё в Южной Швеции. Он был младшим из семерых детей Иоганны (Блад) Лагерквист и Андерса Йогана Лагерквиста. Его отец сначала работал на ферме, а затем стал путевым обходчиком на железной дороге. Будучи школьником, Пер читал <Происхождение видов> Чарлза Дарвина и другие работы, которые формировали у него представления, сильно отличавшиеся от консервативных взглядов его лютеранской семьи. После окончания школы в 1910 г. он в течение двух лет изучал искусство и литературу в Упсальском университете. Литературный дебют Л. состоялся в 1912 г., когда он опубликовал несколько пылких стихотворений и повесть <Люди> (). В 1913 г. писатель едет в Париж, где большое влияние на него оказывает современная живопись, особенно восхищался Л. дерзкой энергией фовистов и интеллектуальной упорядоченностью кубистов. В этом же году он опубликовал эссе <Искусство слова и изобразительное искусство> (), в котором отвергал натурализм, противопоставляя ему скандинавский и греческий эпос. Это критическое эссе оказалось первой работой, которая привлекла внимание к Л., и вскоре он воплотил собственные теории в сборнике поэзии и прозы <Мотивы> (), который вышел в 1914 г., а также в сборнике новелл <Железо и люди> ( 1915). В 1916 г. Л. добился признания, опубликовав поэтический сборник <Тоска> (), который считается первым шведским экспрессионистским произведением. Яркая образность этой книги, ее рваный стиль отразили интерес Л. к фовизму и кубизму. В <Тоске> также выразились боль и отчаяние, вызванные бедствиями первой мировой войны. Американский поэт и критик Кеннет Рексрот писал в <Американском поэтическом обозрении>, что <Тоска> говорит не только об утрате политических иллюзий, но и о душевной раздвоенности писателя. Почти всю первую мировую войну Л. прожил в нейтральной Дании. В это время он много писал для театра. Его первая опубликованная пьеса <Последний человек> (, 1917) изображает глубокие страдания последнего оставшегося на земле человека и продолжает тему отчаяния, вызванного войной. В эссе из сборника <Театр> (, 1918) Л. выступает против натуралистической драмы и восхищается поздними символическими пьесами Августа Стриндберга. Именно влиянием Стриндберга объясняется связь между драматическим творчеством Л. и немецким экспрессионизмом. В 1919 г., работая театральным критиком в стокгольмской газете <Свенска дагбладет> (), Л. опубликовал поэтический сборник <Хаос> () и пьесу <Небесная тайна> (), наиболее удачную из его ранних пьес, в которой выражается глубокий пессимизм Л., его убежденность в том, что если жизнь кажется человечеству высшей ценностью, то это следствие полного безразличия к Богу. Эту же тему писатель развивает в повести <Вечная улыбка> (, 1920). В этой повести герои разговаривают с Богом, спрашивая Его, для чего Он их создал. Бог отвечает, что у Него не было определенной цели, но он сделал все наилучшим образом. Этот ответ оставляет людей в растерянности. Они не нашли той духовной поддержки, в которой нуждались. И это заставляет их искать духовную опору не в божественной силе, а внутри себя. В 20-е гг. Л. много путешествует, посещает Францию и Италию, и пессимизм его в эти годы начинает смягчаться, а стиль становится более конкретным и не таким манерным. Поэзия этого периода - сборники <Путь счастливого человека> (, 1921) и <Песни сердца> (. 1926) - наполнена простотой и оптимизмом, которые отсутствуют в его ранних произведениях. Помимо сборника коротких рассказов <Злые саги> (, 1924), Л. написал две книги, которые многие критики сочли самыми личными произведениями Л.: <Гость действительности> (, 1925) и <Завоеванная жизнь> (. 1927). В книге <Гость действительности> рассказывается о детстве писателя, о том, как его с ранних лет преследовала идея смерти. <Завоеванная жизнь> - это сборник философских размышлений, в котором излагаются взгляды автора на собственное творчество и на мир. По мнению американского критика Альрика Густафсона, эти произведения утверждают веру Л. в <нерушимый дух человека> и <конечную победу добра над злом>. Кроме того, обе книги демонстрируют высокую повествовательную технику Л., который пишет простым языком, ясно и на редкость целенаправленно. К драматургическим произведениям Л. относится также пьеса <Человек, который прожил жизнь> ( 1928). Эта и другие пьесы, написанные в 30-е гг., отличаются большим правдоподобием, использованием повседневного языка. По мере того как в 30-е гг. росла угроза фашизма, творчество Л. становилось все более гуманистическим по духу, писатель подчеркивал необходимость бороться со злом. Хотя Л. объявил о своей гуманистической программе в поэтическом сборнике <У костра> (, 1932) и в пьесе <Король> (, 1932), самый суровый приговор тирании он вынес в <Палаче> (). Эта повесть, написанная в 1933 г. и переработанная в пьесу под тем же названием в 1934-м, строится на сопоставлении средневековья и нашего времени, подтверждая известную мысль о неистребимости зла. Политические и социальные проблемы, возникающие в предвоенной Европе, продолжают доминировать в творчестве Л. на протяжении 30-х гг. В драме <Человек без души> ( 1936) автор показывает, как перерождается, влюбившись, политический террорист, который служил злу, а начинает служить добру. В <Победе во тьме> (. 1939) выведены два брата-близнеца, один - государственный деятель, демократ, другой - продажный демагог. Вторжением Германии в Данию и Норвегию навеяны многие стихи Л. из сборника <Поэзия и бой> (. 1940), опубликованного в год избрания писателя в члены Шведской академии. Л. продолжает писать стихи и пьесы, однако самой значительной работой этого периода является аллегорический роман <Карлик> (, 1944) - история жизни злобного карлика, жившего во времена итальянского Возрождения, которая, по сути, содержит острую критику фашизма, а также человеческой жадности, лицемерия и злобы. В драме <Дайте людям жить> [, 1949) перед нами проходят судьбы тех, кто стал жертвой нетерпимости, среди них есть и вымышленные персонажи, и исторические личности, включая Сократа, Христа, Жанну д'Арк. Роман <Варавва> () был опубликован в 1950 г. и сразу же привлек внимание критиков и писателей, в том числе Андре Жида, который назвал этот роман <замечательной книгой>. Рассказывая историю жестокого разбойника, которого, в отличие от Христа, освободили от распятия, писатель говорит о попытке человека обрести Бога, о необходимости иметь веру. Анализируя роман <Варавва> в <Атлантик Мансли> (), Чарлз Роло называет его <настоящим шедевром>. Многие критики также сошлись на том, что никогда еще евангельская история не была рассказана с такой достоверностью и духовной силой. Переведенный на 9 языков, <Варавва> нашел самый широкий отклик у критиков и является самой популярной книгой писателя. В 1952 г. по этому роману был снят фильм. В 1951 г. Л. была присуждена Нобелевская премия по литературе <за художественную силу и абсолютную независимость суждений писателя, который пытался в своем творчестве найти ответы на вечные вопросы, стоящие перед человечеством>. Член Шведской академии Андерс Эстерлинг сказал, что <Л. принадлежит к тем писателям, которые смело и открыто обращались к самым насущным вопросам человечества, фундаментальным проблемам нашего существования>. Л., человек стеснительный и замкнутый, от ответной речи отказался. Вместо этого после нескольких слов благодарности за награду он прочитал отрывок из книги <Миф человечества> (), написанной за 30 лет до того и неопубликованной. В последующие годы Л. продолжал плодотворно трудиться, закончил девятый сборник стихов <Вечерняя земля> (, 1953), написал еще пять романов: <Сибилла> (, 1956), <Смерть Агасфера> ( 1960), <Паломник в море> (, 1962), <Священная земля> (, 1964) и <Мариамна> (<Маriamne>, 1967). Все эти романы тесно между собой связаны, в них поднимается тема любви, которая решается в духе контрастной символики. Будучи чрезвычайно замкнутым человеком, Л. отделял личную жизнь от профессиональной. В 1918 г. он женился на Карен Дагмар Иоганне Сёренсон. В 1925 г. они развелись, и в том же году писатель женился на Элен Хальберг, вдове шведского художника Йёста Сандельса. Л. умер 11 июля 1974 г. от паралича в стокгольмской больнице в возрасте 83 лет. <Чувство отчужденности - главная тема литературы XX в., и в этом смысле Л. близок таким писателям, как Франц Кафка и Альбер Камю, - писал в 1971 г. шведский критик Гункель Мальм-стрём. - Л. из тех, кого борьба против дегуманизации человечества привела к поиску скрытого Бога, решению метафизических загадок жизни>.

ЛЕДЕРБЕРГ (Lederberg), Джошуа
23.05.1925 12:00 -4 EDT Монтклайр, Нью-Джерси, США 40.49.33.N 74.12.34 -
-----------
Нобелевская премия по физиологии и медицине, 1958 г.
совместно с Джорджем У. Бидлом и Эдуардом Л. Тейтемом. Американский генетик Джошуа Ледерберг родился в Монклере (штат Нью-Джерси), в семье раввина Цви Хирша Ледерберга и Эстер Ледерберг (Голденбаум). За два года до рождения Джошуа его родители эмигрировали в Америку из Палестины. Л. получил начальное образование в государственной школе Нью-Йорка. В 1941 г. он закончил среднюю школу. По окончании школы Л. изучал зоологию на начальном медицинском курсе Колумбийского университета и в возрасте 19 лет получил степень бакалавра с отличием. Затем он поступил в медицинскую школу Колледжа врачей и хирургов Колумбийского университета, но продолжал исследовательскую работу под руководством Ф. Райана на кафедре зоологии Колумбийского университета. После двух лет учебы в медицинской школе Л. летом 1944 г. работал в Йельском университете старшим лаборантом кафедры микробиологии. Хотя Л. вначале собирался осенью вернуться в медицинскую школу, он остался в Йельском университете и продолжил исследовательскую работу и учебу, с тем чтобы получить докторскую степень по микробиологии, под руководством микробиолога и биохимика Эдуарда Л. Тейтема. В Станфордском университете Тейтем и его коллега Джордж У. Бидл проводили исследования, открывшие новые пути развития биохимической генетики - раздела генетики, изучающего биохимические процессы, в результате которых генотип организма (совокупность всех его генов) реализуется в его фенотип (совокупность физических признаков). Генетика зародилась в 1866 г., когда монах-доминиканец Грегор Мендель высказал идею о том, что за наследование физических признаков отвечают некие <элементы>, которые сегодня называются генами. В начале XX в. работы Менделя, не получившие признания при его жизни, стали основой новых научных исследований. Ученые обнаружили, что гены располагаются во внутриядерных образованиях - хромосомах. Однако лишь в 1940 г. стало известно, что гены образованы дезоксирибонуклеиновой кислотой (ДНК). Герман Мюллер в исследованиях, проведенных в 20-х гг., доказал, что рентгеновские лучи вызывают генетические мутации, и в начале 40-х гг. Бидл и Тейтем смогли вызвать мутации у грибка. При этом они установили, что гены, т.е. часть молекулы ДНК, управляют образованием клеточных ферментов (белков, необходимых для различных биохимических реакций в организме) и тем самым регулируют биохимические процессы в клетках. В то время когда Л. под руководством Тейтема начал исследовать генетику бактерий, ученые считали, что эти организмы размножаются бесполым путем: одна бактерия делится и дает начало двум другим. Однако Л. благодаря работам Тейтема и Бидла и собственным исследованиям в Колумбийском университете знал, что грибки размножаются половым путем посредством временного объединения (конъюгации) двух отдельных клеток с образованием третьей - дочерней. Л. предположил, что бактерии также должны размножаться половым путем. Для проверки этого предположения он вместе с Тейтемом исследовал обитающую в толстой кишке человека и животных кишечную палочку (Escherichia coli). Оказалось, что эта бактерия может размножаться половым путем посредством конъюгации двух отдельных клеток. При этом образуется дочерняя клетка, которая делится, и ее потомство также претерпевает последовательные деления, в результате формируется новое поколение бактерий. Скрестив два штамма кишечной палочки, Л. и Тейтем обнаружили, что потомство наследует некоторые черты обоих родительских штаммов. Они назвали это явление половой генетической рекомбинацией. При генетической рекомбинации бактериальных клеток от одной клетки к другой передается полный дополнительный набор хромосом и их генов. В 1947 г. Л. ушел из Йельского университета и стал профессором генетики в Висконсинском университете. Здесь он продолжал исследовать генетическую рекомбинацию бактерий. В следующем году он получил докторскую степень по микробиологии от Йельского университета. В Висконсинском университете Л. разработал специальный метод, при котором с помощью ультрафиолетовых лучей или других факторов, вызывающих мутации, изолируются мутанты того или иного вида бактерий. Он доказал, что мутации происходят спонтанно, и тем самым подтвердил прежде существовавшую гипотезу в эволюционной генетике. Применив свой метод для скрещивания бактерий, резистентных к пенициллину и стрептомицину, он получил бактерии, невосприимчивые к обоим антибиотикам. Кроме того, он доказал, что с помощью подобных методик можно сделать вирулентными относительно безвредные бактерии, и наоборот. В сотрудничестве с аспирантом Висконсинского университета Нортоном Зиндером Л. обнаружил у бактерий процесс трансдукции. При трансдукции, или переносе фрагментов хромосом от одной клетки к другой, изменяется генетический код клетки-реципиента. Некоторые ученые полагают, что вирусы могут изменять генетический код бактерий путем сходного процесса. Поскольку определение порядка следования генов в хромосомах основывается на методах, имеющих отношение к трансдукции, работа Л. внесла большой вклад в дальнейшие исследования и открытия в области генетики бактерий. Кроме того, она открыла дорогу развитию современной рекомбинантной генетики - изучению процессов, с помощью которых можно изменять генетический код бактерий с целью выработки определенных биохимических веществ. В 1957 г. Л. было поручено организовать и возглавить кафедру генетики в Висконсинском университете. Перед тем как приступить к новым обязанностям, он благодаря стипендии, учрежденной Фондом Фулбрайта, смог провести исследования в Мельбурнском университете в Австралии. В 1958 г. Л. была присуждена Нобелевская премия по физиологии и медицине <за открытия, касающиеся генетической рекомбинации и организации генетического материала у бактерий>. Вторая половина премии была присуждена Бидлу и Тейтему <за открытия, касающиеся роли генов в специфических биохимических процессах>. В этом же году Л. получил должность профессора и заведующего кафедрой генетики Станфордского университета. В 1962 г. он стал также директором лаборатории молекулярной медицины Джозефа Кеннеди-младшего в этом же университете. В начале разработки американской космической программы Л. высказывал различные предположения относительно научных и медицинских последствий освоения космоса и был назначен консультантом программы <Викинг>, суть которой состояла в разработке проекта космического полета на Марс. Кроме того, он был советником Всемирной организации здравоохранения по возможным последствиям биологической войны и биологическому оружию. В 1978 г. Л. ушел из Станфордского университета и стал ректором Рокфеллеровского университета. Кроме работ по генетике, он написал много трудов, посвященных биологическим наукам и будущему человека как вида. В 1946 г. Л. женился на бывшей аспирантке Тейтема Эстер Циммер. После развода он в 1968 г. женился на Маргарите Стайн Кирш, в семье у них сын и дочь. Кроме Нобелевской премии, Л. удостоен премии Эли Лилли Общества американских бактериологов (1953) и медали Александра Гамильтона Колумбийского университета. Он обладает почетными степенями Йельского, Колумбийского, Нью-Йоркского и Туринского университетов. Он является членом Национальной академии наук США, Американского химического общества и Американского общества генетиков. В 1979 г. он был избран иностранным членом Лондонского королевского научного общества.